Stochastic Multi-Period OLG Model Computation

Prof. Lutz Hendricks

Econ821

January 28, 2016

Contents

Program Outline	3
Calibration algorithm	4
Household Problem	5
Algorithm Details	9
Writing the Code	14
Household Code	15
Steady State Properties	16
Extensions	22

Program Outline

Set constants:

- exogenous parameters
- guesses for calibrated parameters: (A, δ, β) .
- const_ogm

Set parameters that do not require solution of household problem:

- $A, \delta \rightarrow w$ and r targets (given K/Y).
- Capital grid.
- Markov chain for labor endowments \rightarrow approximate AR(1).
- param_set_ogm

Precompute labor endowment histories.

Precompute aggregate labor supply (exogenous). Find β that matches K/Y target: cal_dev_ogm.

Calibration algorithm

cal_dev_ogm

For each β guess:

- 1. Solve **household** problem \rightarrow policy functions cPolM(ik,ie,a) and kPolM(ik,ie,a).
- 2. Simulate a large number of households (k histories: kHistM(a, ind)).
- 3. Compute **aggregate** K and Y from simulated histories.
- 4. Return deviation from target K/Y.

Household Problem

Solve for policy functions by **backward induction**: hh_solve_ogm In last period (age a_D) household consumes all income: c(k,s) = y(k,s). At earlier ages (*a*): hh_solve_age_ogm

- Take policy function for a + 1 as given.
- For each state (k, s):
 - Search over values of *c* that zero the Euler equation deviation (hh_opt_c_ogm).
 - Store the optimal choice in a matrix cPolM(ik,ie,a).

Finding zero of Euler equation for one state: hh_opt_c_ogm.

- Search over Euler equation deviations (hh_ee_dev_ogm).
- Use precomputed expected marginal utility when old.
- Complication: Must first check that household does not choose a corner (k' = 0).

Euler equation deviation

for one state and k': hh_ee_dev_ogm

- Compute *c* from the budget constraint: c = y k'.
- For each possible state tomorrow (e') compute u'(c'[e']).
 - Take c' from tomorrow's policy function cPolM. This requires interpolation because k' is not on the grid.
- Compute expected marginal utility tomorrow:

$$E\{u'(c')\} = \sum_{e'} \Pr(e'|e) \ u'(c'[e'])$$

• Return deviation: $u'(c) - \beta R' E\{u'(c')\}$. Transform to avoid non-linearity.

This is very slow.

Approximation errors are big, unless k grid is very find at low k

How to make it faster?

Household: Value Function Iteration

A more accurate solution. hh_solve_vfi_ogm

Finding optimal k'

IN:

- y, R, e, parameters
- continuous approximation of $\mathbb{E}V(k'; e', a + 1)$

$\mathsf{OUT:}\ k',c,V\left(k,e,a\right)$

Steps:

- 1. Set feasible range for k'
- 2. If no k' feasible, set k' = kGrid(1)
- 3. Set up Bellman operator
- 4. Use fminbnd to find max of Bellman

Bellman Operator

hh_optc_vfi_ogm

- 1. $c = \max \{cFloor, y k'\}$
- **2.** $V = u(c) + \beta R \mathbb{E} V(k'; e', a + 1)$

Algorithm Details

Stationarity

There is no need to ensure that the household distribution is **stationary**.

- The reason is that all household endowments are exogenous (k_1, e_1) .
- If each generation faces the same prices, they will make the same choices.
- This changes when households receive inheritances or human capital investments from their parents.
- Then: Iterate over household simulations until distribution becomes stationary.

Capital Grid

Number of grid points: Must be set such that quality of approximation is sufficiently good. But increasing n_k is computationally costly.

We set $n_k = 50$ for starters.

Top capital value:

- Must be set such that no household ever reaches it.
- Start with a guess.
- Later check that it is not (rarely) binding.

It would be more efficient to have a different grid for each age (young households cannot hold as much wealth as old ones).

Simulating household histories

Need to draw random numbers (realizations of earnings shocks).

- randn draws Gaussian random numbers.
- It is important to use the same random numbers for every iteration over β guesses.
- Otherwise simulated aggregates change a little bit every time which confuses equation solvers.

Simulating Markov chains:

- Programs for doing this are in shared directory.
- markov_cohort_sim takes a transition matrix Pr(e'|e) and a vector of age 1 states, then simulates e histories for a large number of households.

Computing aggregates

aggr_hist_ogm.

Given a history of, say, individual capital holdings, kHistM(ind, age), compute the aggregate capital stock.

Because the economy is stationary, we can treat the entire history as one cross-section.

That is: we think of kHistM(:, a) as the cohort aged a today.

Let the mass of age a households be $\mu(a)$. In our model: $\mu(a) = 1/a_D$. Then

$$K = \sum_{a=1}^{a_D} \mu\left(a\right) \ mean\left(kHistM(:,a)\right)$$

Writing the Code

Start with primitives:

- u'(c) and its inverse: ces_util_821
- production function: prod_fct_ogm

Computational primitives:

- capital grid: kgrid_ogm
- aggregation from histories: aggr_hist_ogm
- calibrating the labor endowment process: cal_earn_ogm
- household income: hh_income_ogm

Household Code

Start from inside out.

EE deviation: Easy

Optimal c, given $\mathbb{E}u'(c')$ **for each** k'**:** Tricky - need to consider corner solutions. Write out pseudo-code...

Steady State Properties

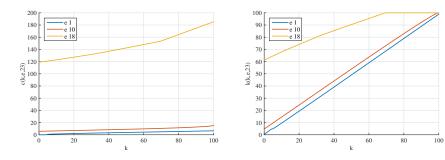
The programs save:

- Simulated histories for nSim households: cHistM(ind, age), kHistM(ind, age), lsHistM(ind, age)
- Aggregates: K, Y, L, etc.

To generate summary statistics: treat the simulated households like an actual dataset.

• bg_stats_ogm

Policy Functions

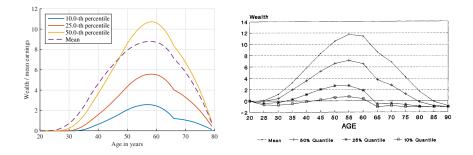


Comparison with Huggett (1996)

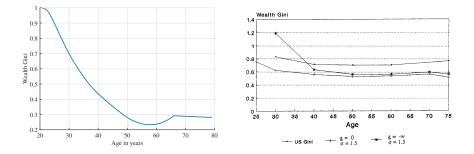
Cross-sectional wealth distribution

Gini: 0.50 Fraction held by top 1 pct: 2.6 pct Fraction held by top 5 pct: 12.9 pct Fraction held by top 25 pct: 58.1 pct Fraction held by top 50 pct: 87.9 pct

Age wealth profiles



Wealth Ginis by age



Exercise

What other statistics would one like to match?

• Write some code to compute those statistics.

Check that the earnings process approximates the target AR(1)

• To estimate an AR(1), match the auto-covariance matrix (Guvenen)

Extensions

Ex ante heterogeneity

Example: households differ in risk aversion or discount factors

Assume there are J types: j = 1, ..., J with mass m_j .

$$\sum_{j} m_j = N$$

Assignment: Modify the code for this case.

We will talk in the next class about any difficulties you encounter.

Note: Be generic.

- Even if households differ in several endowments, just call each combination a type j.
- Then your code does not depend on the nature of heterogeneity.

Intergenerational Links

A simple case: stochastic mortality.

Assume that assets of dying households are given to living households as lump-sum transfers (e.g. everyone gets the same amount) What changes:

- Household discounts at $\beta \times$ survival probability
- Mass of households by age changes
- That affects code for computing aggregates
- Now we need to iterate over a guess for the lump-sum transfer in addition to β

Bequests

Households leave their terminal wealth to newly born agents (generations do not overlap). What changes:

• Now we need to iterate over a guess for the distribution of inheritances (in addition to β)