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Program Outline

Set constants:

• exogenous parameters

• guesses for calibrated parameters: (A, δ, β).

• const_ogm

Set parameters that do not require solution of household problem:

• A, δ → w and r targets (given K/Y ).

• Capital grid.

• Markov chain for labor endowments → approximate AR(1).

• param_set_ogm

Precompute labor endowment histories.
Precompute aggregate labor supply (exogenous).
Find β that matches K/Y target: cal_dev_ogm.
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Calibration algorithm

cal_dev_ogm

For each β guess:

1. Solve household problem→ policy functions cPolM(ik,ie,a) and kPolM(ik,ie,a).

2. Simulate a large number of households (k histories: kHistM(a, ind)).

3. Compute aggregate K and Y from simulated histories.

4. Return deviation from target K/Y .
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Household Problem

Solve for policy functions by backward induction: hh_solve_ogm
In last period (age aD) household consumes all income: c (k, s) = y (k, s).
At earlier ages (a): hh_solve_age_ogm

• Take policy function for a+ 1 as given.

• For each state (k, s):

– Search over values of c that zero the Euler equation deviation (hh_opt_c_ogm).
– Store the optimal choice in a matrix cPolM(ik,ie,a).

Finding zero of Euler equation for one state: hh_opt_c_ogm.

• Search over Euler equation deviations (hh_ee_dev_ogm).

• Use precomputed expected marginal utility when old.

• Complication: Must first check that household does not choose a corner (k′ = 0).
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Euler equation deviation

for one state and k′: hh_ee_dev_ogm

• Compute c from the budget constraint: c = y − k′.

• For each possible state tomorrow (e′) compute u′ (c′ [e′]).

– Take c′ from tomorrow’s policy function cPolM. This requires interpolation
because k′ is not on the grid.

• Compute expected marginal utility tomorrow:

E {u′ (c′)} =
∑
e′

Pr (e′|e) u′ (c′ [e′])

• Return deviation: u′ (c)− β R′ E {u′ (c′)}. Transform to avoid non-linearity.

This is very slow.
Approximation errors are big, unless k grid is very find at low k

How to make it faster?
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Household: Value Function Iteration

A more accurate solution.
hh_solve_vfi_ogm

Finding optimal k′

IN:

• y,R, e, parameters

• continuous approximation of EV (k′; e′, a+ 1)

OUT: k′, c, V (k, e, a)

Steps:

1. Set feasible range for k′

2. If no k′ feasible, set k′ = kGrid(1)

3. Set up Bellman operator

4. Use fminbnd to find max of Bellman
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Bellman Operator

hh_optc_vfi_ogm

1. c = max {cF loor, y − k′}

2. V = u (c) + βREV (k′; e′, a+ 1)
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Algorithm Details

Stationarity

There is no need to ensure that the household distribution is stationary.

• The reason is that all household endowments are exogenous (k1, e1).

• If each generation faces the same prices, they will make the same choices.

• This changes when households receive inheritances or human capital investments from
their parents.

• Then: Iterate over household simulations until distribution becomes stationary.
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Capital Grid

Number of grid points: Must be set such that quality of approximation is sufficiently good.
But increasing nk is computationally costly.
We set nk = 50 for starters.

Top capital value:

• Must be set such that no household ever reaches it.

• Start with a guess.

• Later check that it is not (rarely) binding.

It would be more efficient to have a different grid for each age (young households cannot
hold as much wealth as old ones).
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Simulating household histories

Need to draw random numbers (realizations of earnings shocks).

• randn draws Gaussian random numbers.

• It is important to use the same random numbers for every iteration over β guesses.

• Otherwise simulated aggregates change a little bit every time which confuses equation
solvers.
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Simulating Markov chains:

• Programs for doing this are in shared directory.

• markov_cohort_sim takes a transition matrix Pr (e′|e) and a vector of age 1
states, then simulates e histories for a large number of households.
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Computing aggregates

aggr_hist_ogm.
Given a history of, say, individual capital holdings, kHistM(ind, age), compute the
aggregate capital stock.
Because the economy is stationary, we can treat the entire history as one cross-section.
That is: we think of kHistM(:, a) as the cohort aged a today.
Let the mass of age a households be µ (a). In our model: µ (a) = 1/aD. Then

K =

aD∑
a=1

µ (a) mean (kHistM(:, a))
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Writing the Code

Start with primitives:

• u′ (c) and its inverse: ces_util_821

• production function: prod_fct_ogm

Computational primitives:

• capital grid: kgrid_ogm

• aggregation from histories: aggr_hist_ogm

• calibrating the labor endowment process: cal_earn_ogm

• household income: hh_income_ogm

14 / 24



Household Code

Start from inside out.

EE deviation: Easy

Optimal c, given Eu′ (c′) for each k′: Tricky - need to consider corner solutions.
Write out pseudo-code...
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Steady State Properties

The programs save:

• Simulated histories for nSim households: cHistM(ind, age), kHistM(ind,
age), lsHistM(ind, age)

• Aggregates: K, Y, L, etc.

To generate summary statistics: treat the simulated households like an actual dataset.

• bg_stats_ogm
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Policy Functions
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Comparison with Huggett (1996)

Cross-sectional wealth distribution

Gini: 0.50
Fraction held by top 1 pct: 2.6 pct
Fraction held by top 5 pct: 12.9 pct
Fraction held by top 25 pct: 58.1 pct
Fraction held by top 50 pct: 87.9 pct
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Age wealth profiles
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discount factor due to their decreased survival probability. This means that 
agents eventually prefer a decreasing consumption profile and therefore run 
their assets down to low levels, x4 Second, this effect is strengthened further 
because agents receive a social security annuity that cannot be sold in the 
market. This means that agents reduce their nonsocial security wealth first. 
Finally, these agents no longer have a precautionary savings motive as they do 
not receive labor income and are not subject to health uncertainty or other 
shocks that could motivate precautionary asset holdings in old age. 

The age-wealth distribution in the model economy can be compared to the 
cross-sectional distribution in the US economy. The data for the US economy is 
presented in Fig. 3. The data is from Radner (1989) and is based on the 1984 
Survey of Income and Program Participation (SIPP). Figs. 2 and 3 are similar in 
a number of respects. First, the fact that the median lies below the mean 
indicates that the wealth distribution within each age group is skewed to the 
right in both the model economy and the US economy. Second, a high fraction 
of young agents hold zero and negative wealth in both economies. Finally, 
a high fraction of agents in all age groups hold either very little or zero wealth in 
both economies. 

Diamond and Hausman (1984) describe the low wealth-holding of households 
in their prime earnings years. They calculate that 7 percent of their sample of 

14Leung (1994) argues that in continuous time models agents will run down assets to zero before the 
terminal period. 
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Wealth Ginis by age
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link between an agent's earnings history and the level of social security benefits 
received. 15 

5.5. Wealth concentration within age groups 

A notable feature of the basic life-cycle model is that all agents within an age 
group hold the same level of wealth. This is not a feature of the US data. In fact, 
in the US the Gini coefficient within an age group is similar to the level of the 
overall wealth Gini. This fact is documented for the United States by Projector 
and Weiss (1966) and Greenwood (1987). Atkinson (1971) obtains a similar 
result for Great Britain. 

The patterns in the model economies are compared to the US data in Figs. 4 
and 5. In these figures the US data comes from Projector and Weiss (1966). First, 
note that there is a slight U-shape in the age-Gini profile in that wealth tends to 
be more concentrated among the youngest and oldest age groups than among 
the middle-age groups. Even though the U-shape may not prove to be a robust 
fact of US wealth distribution, it is interesting to consider the shape of the 
age-Gini profile in the model economies. Figs. 4 and 5 show that the model 
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15Hubbard et al. (1995) argue that low levels of wealth holding can also arise in life-cycle models 
when the receipt of social insurance payments  is conditioned on the level of wealth holding. 
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Exercise

What other statistics would one like to match?

• Write some code to compute those statistics.

Check that the earnings process approximates the target AR(1)

• To estimate an AR(1), match the auto-covariance matrix (Guvenen)
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Extensions

Ex ante heterogeneity

Example: households differ in risk aversion or discount factors
Assume there are J types: j = 1, ..., J with mass mj .∑

j mj = N

Assignment: Modify the code for this case.
We will talk in the next class about any difficulties you encounter.
Note: Be generic.

• Even if households differ in several endowments, just call each combination a type j.

• Then your code does not depend on the nature of heterogeneity.
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Intergenerational Links

A simple case: stochastic mortality.
Assume that assets of dying households are given to living households as lump-sum transfers
(e.g. everyone gets the same amount)
What changes:

• Household discounts at β×survival probability

• Mass of households by age changes

• That affects code for computing aggregates

• Now we need to iterate over a guess for the lump-sum transfer in addition to β
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Bequests

Households leave their terminal wealth to newly born agents (generations do not overlap).
What changes:

• Now we need to iterate over a guess for the distribution of inheritances (in addition
to β)
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