
A Simple Two Period OLG Model
Prof. Lutz Hendricks

Econ821

January 25, 2016

1 / 21



Contents

Introduction 3

Deterministic Two Period OLG Model 4

The Environment 5

Household problem 6

Computing the Household Problem 8

Programs: Household Problem 13

Things to Come 21

2 / 21



Introduction

We set up a simple 2 period OLG model and compute it.
We later extend the model to

• many periods

• random earnings

Then we can study the wealth distribution, earnings distribution, etc.
The main goal for now: figure out how to compute a simple model.

3 / 21



Deterministic Two Period OLG Model

We start with the simplest model:

• Households live for 2 periods.

• There is no uncertainty.

We compute the model in blocks:

• Household

• Firm

• Market clearing

4 / 21



The Environment

Demographics:

• in each period, mass 1 of households are born

• each lives for 2 periods

Endowments:

• the initial old own K1 units of capital

• each young has 1 unit of work time

Preferences:
max u(cyt ) + β u(cot+1)

Technologies:
Y = F (K,L) = C +K ′ − (1− δ)K

5 / 21



Household problem

Household solves
max u(cyt ) + β u(cot+1)

subject to
cot+1 − wot+1 = (1 + rt+1) (w

y
t − c

y
t )

Solution:

• Euler equation
u′(cyt ) = β (1 + rt+1)u

′(cot+1)

• Lifetime budget constraint

Wt = cyt +
cot+1

1 + rt+1

Definition: Lifetime (permanent) income:

Wt ≡ wyt +
wot+1

1 + rt+1

6 / 21



Implications for consumption behavior

Permanent Income Hypothesis:
Consumption at each date only depends on Wt, not on the timing of income over the
life-cycle.

Consumption growth does not depend on income growth.
In the data: Consumption tracks income over the life-cycle (Carroll and Summers 1991).

7 / 21



Computing the Household Problem

Set of equations to be solved:

u′(cyt ) = β (1 + rt+1)u
′(cot+1)

Wt = cyt +
cot+1

1 + rt+1

Simplify: Solve for a zero of

u′(cyt ) = β (1 + rt+1)u
′ ([1 + rt+1] [Wt − cyt ])

Then use budget constraint to compute cot+1.

8 / 21



Closed form solution

We could solve the household problem in closed form for isoelastic utility:

cy =
[
β (1 + r) {(1 + r) (W − cy)}−σ

]−1/σ

cy =
β−1/σ (1 + r)

1−1/σ
W

1 + β−1/σ (1 + r)
1−1/σ

Instead, we will use a general numerical algorithm that searches for a zero of the Euler
equation deviation.

9 / 21



Setting Parameters

We use a simple calibration approach.
Model period: λ = 30 years per period.
Preferences:

• u(c) = c1−σ/(1− σ).

• σ = 2 based on micro-evidence.

• β = 0.97 (better: set to match K/Y ).

Interest rate:

• What is ”the” interest rate? No good answer.

• Set r̃ = 0.05 per year (Cooley and Prescott). Then (1 + r) = 1.05λ.

Earnings:

• Normalize wyt = 1. Physical ages 21-50.

• Think of wot+1 as non-capital income of ”elderly” (ages 51-80). Set wot+1 = 0.6.

10 / 21



Exogenous and calibrated parameters

Model parameters are either exogenous or calibrated.

Exogenous parameters include:

• Fixed preference parameters (σ).

• Fixed technology parameters (α).

• Calibration targets (K/Y ).

• These are set by const_olg2d.m.

Calibrated parameters include:

• Discount factor β.

• Depreciation rate δ.

11 / 21



Code organization

• suffix for unique names: _olg2d

• startup routine: init_821 + go_olg2d

– puts shared progs on path
– switches to directory with programs

• we have a program that runs everything in sequence: run_all_olg2d

– general rule: you should be able to go from nothing to all results with a single
command

– this also serves as documentation

• exogenous model parameters are set by const_olg2d

– We solve the models for different parameter combinations.
– They are indexed by calNo.

12 / 21



Programs: Household Problem

We now go over the household programs in detail.
Hint: Always write down the algorithm in "pseudo code" before you start writing programs.

Steps:

1. Set constants: const_olg2d

2. Iterate over guesses for cyt in the feasible interval c
y
t ∈ [0, wyt ] (hh_solve_olg2d.m)

3. For each guess of cyt compute the deviation from the Euler equation (hh_dev_olg2d.m).

4. Stop when Euler equation deviation is sufficiently small.

Now we write the code, typically inside-out.

13 / 21



Euler Equation deviations

hh_dev_olg2d.m

Compute co from budget constraint

co = (1 + r) (w − cy)

Compute right-hand-side of Euler equation

β (1 + r) u′ (co)

Return deviation
dev = u′ (cy)− β (1 + r) u′ (co)

Problem: this deviation is not well behaved.

14 / 21



CES Marginal Utility

Marginal utility is very non-linear for low values of consumption.
To avoid strong non-linearity, use inverse marginal utility function:

(u′)
−1

(x) = x−1/σ

Find the deviation of the transformed Euler Equation

cyt =
[
β (1 + rt+1) ([1 + rt+1] [Wt − cyt ])

−σ
]−1/σ

Drawback: Now it’s harder to swap out the utility function

• unless we bundle the Euler equation deviation into the utility function class.

15 / 21



Euler equation deviation as a function of cyt

cY

0.1 0.2 0.3 0.4 0.5 0.6

D
e
v
ia

ti
o
n

0

10

20

30

40

50

60

70

80

Transformed

Not transformed

16 / 21



Solving the household problem

hh_solve_olg2d.m.

Steps:

1. Set up a range of possible c values.

2. For each c, compute the Euler equation deviation (hh_dev_olg2d.m).

3. Search for a c with a small enough deviation using fzero.

17 / 21



Digression: Finding Zeros

For single variable problems use the built-in function fzero.

Example:

Find the solution to the equation f (x) = ln (x)− 5 = 0.

Set up a function that returns the deviation f(x):

function dev = dev1_821(x);
dev = log(x) - 5;
end

Use fzero to search for the solution:

fzero(@dev1_821, [0.1 100])
ans =
7.3891

Note: @dev1_821 is a function handle.
It essentially passes the name of the function (really: a pointer to the function) to another
function.

How fzero works:

• Start with two values of x where f(x) is of opposite sign.

• Interpolate between the two points to find a new guess for x.

• Narrow the interval and iterate.

What if the deviation function needs other inputs?

In the OLG model, the deviation function must know all model constants.
But fzero cannot pass additional arguments to the objective function.
The solution: a nested function.

• it sits entirely inside another function

18 / 21



– here: inside hh_solve_olg2d

• it can see all the variables defined in the surrounding function

• it contains a single line
dev = hh_dev_olg2d(guess, inputS);

19 / 21



Search Steps of Household Algorithm

cY

0 0.2 0.4 0.6 0.8 1 1.2

E
u
le

r 
eq

u
at

io
n
 d

ev
ia

ti
o
n

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
1

2

34

20 / 21



Things to Come

Later we will solve the General Equilibrium for this model.

21 / 21


	Introduction
	Deterministic Two Period OLG Model
	The Environment
	Household problem
	Computing the Household Problem
	Programs: Household Problem
	Things to Come

