

McCall Model

Prof. Lutz Hendricks

Econ721

December 17, 2025

Motivation

- ▶ We would like to study basic labor market data:
 - ▶ unemployment and its duration
 - ▶ wage heterogeneity among seemingly identical workers
 - ▶ job to job transitions
 - ▶ how do policies affect those variables?
- ▶ Frictionless models of the labor market cannot talk about these issues.
- ▶ We need models in which workers must **search for jobs**.

Search Models

- ▶ Unemployment is a productive activity:
workers search for a new job.
- ▶ Types of models:
 1. Decision theoretic (McCall model).
 2. Matching: A matching function creates new jobs.
 3. Search: Random encounters and bargaining.

McCall Model

- ▶ A partial equilibrium model of a worker searching for a job.
- ▶ The worker lives forever, in discrete time.
- ▶ Preferences:

$$\mathbb{E} \sum_{t=0}^{\infty} \beta^t y_t$$

- ▶ y_t is income.
- ▶ When employed: $y = w$.
- ▶ When unemployed: $y = c$.

Timing

Enter the period as unemployed worker.

- ▶ Consume c .

With probability λ :

- ▶ Draw a wage offer w from the distribution $F(W) = \Pr(w \leq W)$.
- ▶ Support: $[0, B]$.
- ▶ Choose whether to accept or reject.
- ▶ If accept:
 - ▶ work forever at wage w with lifetime income $\frac{w}{1-\beta}$.
 - ▶ starting next period

- ▶ If no offer accepted: start over next period.

Employed

Work forever at wage w .

Value is present value of wages

$$v(w) = \frac{w}{1 - \beta} \quad (1)$$

Unemployed

$$V_U = c + \beta(1 - \lambda)V_U + \beta\lambda \int_0^B \max\{v(w), V_U\} dF(w) \quad (2)$$

Reservation wage satisfies

$$v(\bar{w}) = V_U \quad (3)$$

Accept all offers that are better than being unemployed tomorrow.

Reservation wage property

Add and subtract $\beta\lambda V_U$:

$$V_U = c + \beta(1 - \lambda)V_U + \beta\lambda V_U + \beta\lambda \int_0^B \max\{v(w) - V_U, 0\} dF(w) \quad (4)$$

$$= c + \beta V_U + \beta\lambda \int_{\bar{w}}^B [v(w) - V_U] dF(w) \quad (5)$$

Replace $V_U = \bar{w}/(1 - \beta)$ and $v(w) = w/(1 - \beta)$

$$\bar{w} = c + \frac{\beta\lambda}{1 - \beta} \int_{\bar{w}}^B (w - \bar{w}) dF(w) \quad (6)$$

Reservation wage

$$\bar{w} = c + \frac{\beta \lambda}{1 - \beta} \int_{\bar{w}}^B (w - \bar{w}) dF(w) \quad (7)$$

In words:

- ▶ the surplus from working now $(\bar{w} - c)$ equals
- ▶ the surplus from searching: the expected lifetime wage gain from perhaps finding a better job

Implications: Unemployment Benefits

What is the effect of more generous unemployment benefits (higher c)?

Optimality: $c = \bar{w} - \text{expected surplus}$ or

$$c = \bar{w} - \frac{\beta\lambda}{1-\beta} \int_{\bar{w}}^B (w - \bar{w}) dF(w) \quad (8)$$

Expected surplus shrinks when \bar{w} rises.

RHS increases in \bar{w} .

Higher $c \rightarrow$ higher reservation wage \rightarrow longer unemployment.

More dispersed wage offers

- ▶ Result: A mean preserving spread in the wage offer distribution raises the reservation wage and ex ante utility.
- ▶ Intuition:
 - ▶ Making bad wage offers worse is costless - they are rejected anyway.
 - ▶ Making good wage offers better is valuable.
- ▶ Proof: Ljunqvist & Sargent.

Extension: Job separations

Each period the worker is fired with probability α .

A fired worker must wait 1 period before drawing a new wage.

Now we have 3 states the worker can be in:

1. unemployed, waiting for a wage offer: v_U
2. unemployed with a wage offer: $v(w)$
3. employed: $v_E(w)$

Value functions

Value when unemployed without offer is unchanged:

$$v_U = c + \beta V_U + \beta \lambda \int_{\bar{w}}^B [v(w) - V_U] dF(w)$$

Value when unemployed with an offer also unchanged:

$$v(w) = \max \{v_E(w), v_U\}$$

Value when employed at wage w :

$$\begin{aligned} v_E(w) &= w + \beta(1 - \alpha)v_E(w) + \beta\alpha v_U \\ &= \frac{w + \beta\alpha V_U}{1 - \beta(1 - \alpha)} \end{aligned}$$

Reservation wage

Recall

$$v(w) = \frac{w + \beta \alpha V_U}{1 - \beta (1 - \alpha)} \quad (9)$$

and

$$V_U = v(\bar{w}) = \frac{\bar{w} + \beta \alpha V_U}{1 - \beta (1 - \alpha)} \quad (10)$$

$$\bar{w} = c + \frac{\beta \lambda}{1 - \beta (1 - \alpha)} \int_{\bar{w}}^B (w - \bar{w}) dF(w) \quad (11)$$

The reservation wage falls when α rises.

- If jobs do not last as long, there is no point holding out for the perfect offer.

3. Frictional Wage Dispersion

Frictional Wage Dispersion

A puzzle: The McCall model implies **very small wage dispersion**.

Intuition:

- ▶ Unemployment spells tend to be short.
- ▶ Wage offers must arrive frequently.
- ▶ Waiting for a better job is cheap, but highly profitable.

Reference: **Macroeconomics**, ch. 20.9.

Deriving Wage Dispersion

We will look at the ratio of mean wage to minimum (accepted) wage.

Mean accepted wage:

$$w_{mean} = \frac{\int_{\bar{w}}^B w \times dF(w)}{1 - F(\bar{w})} \quad (12)$$

Minimum wage observed: \bar{w} , given by

$$\bar{w} = c + \frac{\beta \lambda}{1 - \beta (1 - \alpha)} \int_{\bar{w}}^B (w - \bar{w}) dF(w) \quad (13)$$

Deriving Wage Dispersion

Assume $1 + r = 1/\beta$, so that

$$r + \alpha = \frac{1 - \beta(1 - \alpha)}{\beta} \quad (14)$$

Then

$$\bar{w} = c + \frac{\lambda}{r + \alpha} \int_{\bar{w}}^B (w - \bar{w}) dF(w) \quad (15)$$

Note that we can break the integral into 2 terms:

$$\int_{\bar{w}}^B (w - \bar{w}) dF(w) = (1 - F(\bar{w})) [w_{mean} - \bar{w}] \quad (16)$$

Deriving Wage Dispersion

Define the job finding rate as

$$H = \lambda (1 - F(\bar{w})) \quad (17)$$

Then

$$\bar{w} = c + \frac{H \times (w_{mean} - \bar{w})}{r + \alpha} \quad (18)$$

Divide by w_{mean} to obtain

$$\mu \equiv \frac{w_{mean}}{\bar{w}} = \frac{1 + \frac{H}{r + \alpha}}{\frac{c}{w_{mean}} + \frac{H}{r + \alpha}} \quad (19)$$

How Large is Wage Dispersion?

With monthly data, roughly:

- ▶ job finding rate $H = 0.43$ (that's the key moment)
- ▶ separation rate $\alpha = 0.03$
- ▶ interest rate $r = 0.004$
- ▶ replacement rate $c/w_{mean} \approx 0.4$

Then mean-min wage ratio

$$\mu \approx 1.05 \tag{20}$$

Data: $\mu > 2$.

Why So Small?

Intuition:

- ▶ job finding rate is high
- ▶ waiting for a better job does not take long
- ▶ wage benefits are large
- ▶ cannot generate substantial wage dispersion

Possible Solutions

1. On the job search
 - ▶ No need to wait for the perfect job before accepting.
2. Job ladders
 - ▶ While employed, workers learn or find better matches.
 - ▶ Stochastic worker productivity

Stochastic Wages

Model With Stochastic Wages

Based on Rogerson et al. (2005).

Timing:

Enter the period either as

- ▶ unemployed: value V_U or as
- ▶ employed: value $V(w)$.

If unemployed:

- ▶ earn c today
- ▶ draw a wage offer w' for next period with probability α
- ▶ if accept: get $V(w)$ tomorrow
- ▶ if reject: get V_U tomorrow

Timing

If employed:

- ▶ earn w today and eat it
- ▶ draw a new wage w' for tomorrow with probability λ .
- ▶ if accept: $V(w')$
- ▶ if reject (or no offer): unemployed tomorrow

All wage offers are drawn from the same distribution:

$$F(W) = \Pr(w' \leq W) \text{ with support } [0, B].$$

Value of a wage offer

Consider an unemployed (or employed) worker who is about to receive a wage offer.
His value is

$$\hat{Q} = \int \max \{ V(w'), V_U \} dF(w') \quad (21)$$

Independent of current w (in case of employed)

- ▶ because that offer is lost

Call the reservation wage \bar{w} .

- ▶ it is the same for employed or unemployed

Value of a wage offer

$$\hat{Q} = \int \max \{ V(w'), V_U \} dF(w') \quad (22)$$

$$= \int \max \{ V(w') - V_U, 0 \} dF(w') + V_U \quad (23)$$

$$= \underbrace{\int_{\bar{w}}^B \{ V(w') - V_U \} dF(w')}_{Q} + V_U \quad (24)$$

In words:

- ▶ you always get at least V_U (because you can always take that option)
- ▶ if $w' > \bar{w}$, you also get a surplus Q

Unemployed Worker

Before receiving offer

$$V_U = c + \beta \left[\alpha \hat{Q} + (1 - \alpha) V_U \right] \quad (25)$$

$$= c + \beta [\alpha (Q + V_U) + (1 - \alpha) V_U] \quad (26)$$

$$= c + \beta \alpha Q + \beta V_U \quad (27)$$

Get c today.

With probability α get to choose between work and unemployment tomorrow.

Therefore

$$(1 - \beta) V_U = c + \beta \alpha Q \quad (28)$$

Employed Worker

Bellman equation for a worker with wage w :

$$V(w) = w + \beta [\lambda \hat{Q} + (1 - \lambda) V(w)] \quad (29)$$

Get w today.

With probability λ , face the same choice as an unemployed worker with offer w' .

Simplify:

$$V(w) = w + \beta \lambda (Q + V_U) + \beta (1 - \lambda) V(w) \quad (30)$$

Reservation Wage

Evaluate $V(w)$ at $w = \bar{w}$ and use $V(\bar{w}) = V_U$:

$$V(\bar{w}) = \bar{w} + \beta \lambda (Q + V_U) + \beta (1 - \lambda) V_U \quad (31)$$

Therefore

$$(1 - \beta) V_U = \bar{w} + \beta \lambda Q \quad (32)$$

Reservation Wage

We now have

$$(1 - \beta)V_U = \bar{w} + \beta\lambda Q \quad (33)$$

$$= c + \beta\alpha Q \quad (34)$$

Perhaps easier:

$$\bar{w} - c = \beta(\alpha - \lambda)Q \quad (35)$$

Reservation Wage

If $\alpha = \lambda$: $\bar{w} = c$.

- ▶ Accept any job that pays more than unemployment benefits
- ▶ The reason is that the continuation value does not depend on employment status.

If $\alpha > \lambda$: $\bar{w} > c$.

- ▶ Being unemployed has a search value. So the agent holds out for better wage offers.

Reservation Wage

Add and subtract $V_U - V(w)$ in equation for $V(w)$:

$$(1 - \beta)V(w) = w + \beta\lambda Q + \beta\lambda[V_U - V(w)] \quad (36)$$

Substitute out Q from equation for reservation wage

$$(1 - \beta)V_U = \bar{w} + \beta\lambda Q \quad (37)$$

to obtain

$$(1 - \beta)[V(w) - V_U] = w - \bar{w} + \beta\lambda[V_U - V(w)] \quad (38)$$

Solve for

$$V(w) - V_U = \frac{w - \bar{w}}{1 - \beta + \beta\lambda} \quad (39)$$

If we specified the distribution F , we could use this to evaluate Q and solve for everything else.

Applications

Life-cycle earnings profiles and occupational mobility:

- ▶ Kambourov and Manovskii (2009, 2008)

Business cycle models that match labor market facts:

- ▶ Jovanovic (1987)

What is missing?

- ▶ Not satisfactory: The job finding rate / wage offer distribution should be endogenous.
 - ▶ Think about analyzing policies...
- ▶ Matching and search models address this.
 - ▶ by introducing endogenous supply of jobs
 - ▶ and wage bargaining.

Reading

- ▶ **Macroeconomics**, ch. 20.9
- ▶ **Ljungqvist and Sargent (2004)**, ch. 6.3
- ▶ **Krusell (2014)**, ch. 11
- ▶ **Williamson (2006)**, "Notes on macroeconomic theory," ch. 7, works out a similar model with exogenous job separations.

References I

Jovanovic, B. (1987): "Work, Rest, and Search: Unemployment, Turnover, and the Cycle," *Journal of Labor Economics*, 131–148.

Kambourov, G. and I. Manovskii (2008): "RISING OCCUPATIONAL AND INDUSTRY MOBILITY IN THE UNITED STATES: 1968–97*," *International Economic Review*, 49, 41–79.

——— (2009): "Occupational mobility and wage inequality," *The Review of Economic Studies*, 76, 731–759.

Krusell, P. (2014): "Real Macroeconomic Theory," Unpublished.

Ljungqvist, L. and T. J. Sargent (2004): *Recursive macroeconomic theory*, 2nd ed.

Rogerson, R., R. Shimer, and R. Wright (2005): "Search-Theoretic Models of the Labor Market: A Survey," *Journal of Economic Literature*, 43, 959–988.