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Topics

We study the equilibrium of the OLG production economy

1. Dynamics of capital accumulation
2. Steady state
3. Dynamic efficiency
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Competitive Equilibrium

Recall the equilibrium definition for the production economy:

An allocation:
(
cy

t ,co
t ,st,bt,Kt,Lt

)
Prices: (qt,rt,wt)

That satisfy:

▶ the household EE and budget constraints (3 equations)
▶ the firm’s FOCs (2 equations)
▶ the market clearing conditions (4 equations)
▶ identity: r = q−δ .
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2. Saving Function and Dynamics



Saving Function and Dynamics

We need to describe how the economy evolves over time.

▶ a CE is an infinite sequence

We derive a difference equation (a law of motion) for the
economy’s state variables.

What are the state variables?

▶ Variables carried over into the current period from the last
period.

▶ Variables that are predetermined in the current period.

Here: the state variable is Kt.

More conveniently, we use kt = Kt/Nt as the state variable.
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Saving Function and Dynamics

The evolution of k is characterized by capital market clearing

Kt+1 = Ntst+1 (1)

or

Kt+1/Nt+1 = Nt/Nt+1 · st+1

(1+n)kt+1 = st+1 (2)

together with the household saving function

st+1 = s(wt,rt+1) (3)
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Saving function

Start from the Euler equation

β (1+ rt+1)u′(co
t+1) = u′(cy

t )

Substitute in the budget constraints for both ages:

β (1+ rt+1)u′([1+ rt+1]st+1) = u′(wt − st+1)

This implicitly defines a saving function

st+1 = s(wt,rt+1) (4)
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Log utility example
u(c) = lnc

u′ (c) = 1/c

Euler equation:
1/cy

t = β (1+ rt+1)1/co
t+1 (5)

Apply the budget constraints

β (1+ rt+1)

(1+ rt+1)st+1︸ ︷︷ ︸
co

t+1

=
1

wt − st+1︸ ︷︷ ︸
cy

t

(6)

or

st+1 = wtβ/(1+β ) (7)

With log utility, the saving rate does not depend on the interest
rate. 8 / 42



subSecNo Properties of the saving function

Totally differentiate

β (1+ rt+1)u′([1+ rt+1]st+1) = u′(wt − st+1)

Higher endowments raise saving:

dst+1

dwt
=

u′′(cy
t )

β (1+ rt+1)2u′′(co
t+1)+u′′(cy

t )
> 0

Intuition...
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Effect of the interest rate

∂ st+1

∂ rt+1
=−

βu′(co
t+1)+β (1+ rt+1)u′′(co

t+1)st+1

β (1+ rt+1)2u′′(co
t+1)+u′′(cy

t )
(8)

Simplify (details below):

∂ st+1

∂ rt+1
=−

βu′(co
t+1)(1−σ

[
co

t+1

]
)

β (1+ rt+1)2u′′(co
t+1)+u′′(cy

t )
(9)

where

σ (c)≡−∂u′

∂c
c
u′

=−u′′(c)c
u′(c)

> 0 (10)

is the elasticity of u′ w.r.t c.

The point: The effect of the interest rate on saving is ambiguous
and depends on σ .
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Derivation

Use the 2nd period budget constraint to replace (1+ rt+1)st+1 by
co

t+1.

∂ st+1

∂ rt+1
=−

βu′(co
t+1)+βu′′(co

t+1) co
t+1

β (1+ rt+1)2u′′(co
t+1)+u′′(cy

t )
(11)

“Pull out” u′
(
co

t+1

)
.
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Effect of a higher interest rate

The figure illustrates the case where income and substitution effect
just cancel.

Note the role of the curvature of the ICs.
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Effect of the interest rate

σ (c)≡−u′′(c)c
u′(c)

> 0 (12)

measures the curvature of the indifference curves.

High σ =⇒

▶ strong curvature of u and of indifference curves.
▶ small substitution effect.

σ is a key parameter in (macro) models

▶ it governs how easily people substitute consumption over time
▶ it also governs how willing people are to take risks (see later).
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Elasticity of substitution

Fact
1/σ is the elasticity of substitution between ct and ct+1.

Definition
The elasticity of substitution is given by

E =− d ln(ct+1/ct)

d ln(u′ (ct+1)/u′ (ct))
(13)
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Elasticity of substitution

Intuition:

Consider moving along an indifference curve.

Change the consumption ratio ct+1/ct by a given amount

▶ that is the slope of a ray through the origin

What happens to the slope of the indifference curve?

▶ The slope is βu′ (ct+1)/u′ (ct) – the marginal rate of
substitution.

▶ At the optimum, this is also the relative price of future
consumption (1+ rt+1).

If the slope changes a lot (high curvature), the elasticity E is small.
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Elasticity of substitution (details) I

Consider an infinitesimal change of consumption from
ct → ct (1+ ε):

ln(ct+1/ct) = ln(1+ ε)≈ ε (14)

u′ (ct+1) = u′ (ct (1+ ε))≈ u′ (ct)+u′′ (ct)ctε (15)

= u′ (ct)

[
1+

u′′ (ct)ct

u′ (ct)
ε

]
(16)

= u′ (ct) [1−σε] (17)

16 / 42



Elasticity of substitution (details) II

Hence
ln
(
u′ (ct+1)/u′ (ct)

)
= ln(1−σε)≈−σε (18)

1/E =−d ln(1−σε)

dε
≈ dσε

dε
= σ (19)
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CRRA Utility

In particular, for the popular CRRA utility function

u(c) = c1−σ/(1−σ)

the σ (c) is constant (namely σ , show this!).

For σ = 1, this becomes log utility (and sr = 0).

In the data, σ is most likely greater than one, although its value is
highly controversial.

CRRA stands for “constant relative risk aversion.”

▶ σ is the coefficient of relative risk aversion (see discussion of
stochastic economies).
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CRRA Utility
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3. Law of Motion for the Capital Stock



Law of motion for capital
Recall (1+n)kt+1 = s(wt,rt+1).

Use the firm FOCs to replace the prices:

(1+n)kt+1 = s(f (kt)− f ′(kt)kt, f ′(kt+1)−δ )

This is a first order difference equation of the form

kt+1 = φ(kt)

Implicitly differentiating yields

dkt+1

dkt
=

−swktf ′′(kt)

1+n− srf ′′(kt+1)
(20)

This completely determines the behavior of the economy.
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Concave law of motion
If φ is concave, we get simple dynamics.

From any initial condition (k0) the economy converges
monotonically to a unique steady state (k∗).
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Properties of the law of motion

We know:

▶ φ (0) = 0: k = 0 is a steady state.
▶ The derivative is

dkt+1

dkt
=

−swktf ′′(kt)

1+n− srf ′′(kt+1)
(21)

▶ A sufficient condition for φ ′ > 0 is sr > 0. Intuition: the supply
of capital is upward sloping.

Otherwise, little can be said in general.
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Log utility - Cobb Douglas example

The utility function is u(c) = ln(c).

Then the household saves a constant fraction of his earnings:

cy
t = wt/(1+β )

and therefore
st+1 = wtβ/(1+β )
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Log utility - Cobb Douglas example

Assume further that f (k) = kθ . Then

w = (1−θ)kθ

The law of motion then becomes

(1+n)kt+1 =
β

1+β
(1−θ)kθ

t

Because sr = 0 and sw is a constant, φ inherits the curvature of the
production function.

A unique, stable steady state exists.
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Log utility - Cobb Douglas example
Steady state

k∗ =
[

1−θ

1+n
β

1+β

]1/(1−θ)

Steady state interest rate:

f ′ (k) = θ kθ−1

f ′ (k∗) =
θ

1−θ

1+β

β
(1+n)

r = f ′ (k)−δ

Note: the steady state interest rate could be very small (low θ or
high β ) or very large.
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Log utility - Cobb Douglas example

▶ The example provides a microfoundation for the Solow model.
▶ But it is a special case.
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An ill behaved example

The economy osciallates towards the steady state.

Multiple steady states are possible.

An important insight: Even very simple models can have
surprisingly complicated (and unpleasant) dynamics.
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4. Steady State and Dynamic Efficiency



Steady State

Definition
A steady state is an equilibrium where all (per capita) variables are
constant.

Note: Aggregates can grow (Kt = ktNt), but per capita variables
cannot (kt).
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The Golden Rule

Definition
The Golden Rule capital stock maximizes steady state consumption
(per capita).

Consumption per young household is

cy + co/(1+n) = f (k)+(1−δ )k− (1+n)k′

Impose the steady state requirement k′ = k and maximize with
respect to k:

f ′(kGR) = n+δ (22)

Intuition...
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Dynamic Inefficiency

Definition
An allocation is dynamically efficient, if k < kGR.

▶ k > kGR implies a Pareto inefficient allocation.
▶ By running down the capital stock, households at all dates

could eat more.

Key point:

Nothing rules out a steady state that is dynamically inefficient.

Why is it surprising that the equilibrium can be Pareto inefficient?
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Why Is Dynamic Inefficiency Possible?

▶ Vaguely, the First Welfare Theorem says:
when all markets are competitive and some other conditions
hold, every CE is Pareto Optimal.

▶ One of the "other conditions" comes in 2 flavors:
1. there is a finite number of goods
2. ∑

∞
j=1 pj < ∞ where pj are the CE (Arrow-Debreu) prices.

▶ Both conditions are violated in the OLG model.
▶ Acemoglu, ch. 9.1.
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Intuition: Dynamic Inefficiency

▶ A missing market: the old must finance their consumption
out of own saving, even if the rate of return is very low.
▶ Suppose households value only co.
▶ Then households save all income at rate of return f ′(k′)−δ .
▶ For high k′, this can be negative.

▶ An alternative arrangement that makes everyone better off:
▶ In each period, each young gives up 1 unit of consumption.
▶ Each old gets to eat 1+n units.
▶ If n > f ′ (k)−δ , this makes everyone better off.
▶ We will return to this idea in the section on “social security.”
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Summary

To characterize equilibrium, we typically derive a difference
equation in the state variables.

▶ Here: kt+1 = φ (kt)

The properties of φ() depend on the saving function.

Even in this simple model, we cannot guarantee that we simple
dynamics.

The steady state is an equilibrium where per capita variables are
constant.

We cannot guarantee that the steady state is dynamically efficient.

▶ The potential problem is overaccumulation of capital.

35 / 42



5. Final Example: Government Bonds



Final Example: Government Bonds

We introduce harmless bonds into the model.

All the government does: issue new bonds to pay off the old ones.

Magical result: the steady state is at the golden rule.

One insight: introducing an infinitely lived asset fixes dynamic
inefficiency

▶ actually, the assets here live for only one period
▶ but they serve the same function because there is now an

infinitely lived agent who keeps trading the bonds
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Environment

Demographics: Nt = (1+n)t. Agents live for 2 periods.

Preferences:
(1−β ) ln(cy

t )+β ln(co
t+1)

Endowments:

▶ The initial old are endowed with s0 units of capital.
▶ Each young is endowed with one unit of work time.
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Environment

Technology:

Ct +Kt+1 − (1−δ )Kt = F(Kt,Lt) = Kα
t L1−α

t

Government: The government only rolls over debt from one period
to the next:

Bt+1 = RtBt

Markets: for goods, bonds, labor, capital rental.
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Questions

1. Solve the household problem for a saving function.
2. Derive the FOCs for the firm.
3. Define a competitive equilibrium.
4. Derive the law of motion for the capital stock

kt+1(1+n) = β (1−α)kα
t −bt+1(1+n) (23)

where b = B/L.
5. Derive the steady state capital stock for b = 0. Why does it

not depend on δ?
6. Derive the steady state capital stock for b > 0.
7. Show that the capital stock is lower in the steady state with

positive debt (crowding out).
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Reading

▶ Acemoglu (2009), ch. 9.
▶ Krueger, "Macroeconomic Theory," ch. 8
▶ Ljungqvist and Sargent (2004), ch. 9 (without the monetary

parts).
▶ McCandless and Wallace (1991)and De La Croix and Michel

(2002) are book-length treatments of overlapping generations
models.
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