1 Money and Heterogeneity

Consider a two-period OLG model with fiat money.
Demographics: In each period $N_t = (1 + n)^t$ persons are born. Each lives for 2 periods. Half of the agents are of type I, the other half of type II.
Endowments: The initial old hold M_0 units of money, evenly distributed across agents. Each person is endowed with (e_y^t, e_o^t) units of consumption when (young, old).
Preferences: $\ln(c_y^t) + \beta \ln(c_o^{t+1})$.
Technology: Goods can only be eaten the day they drop from the sky.
Government: The government pays a lump-sum transfer of $x_t^p t$ units of money to each old person: $M_t = M_{t-1} + N_t x_t^p t$. The aggregate money supply grows at the constant rate μ: $M_{t+1} = (1 + \mu) M_t$.
Markets: In each period, agents buy/sell goods and money in spot markets.

Questions:

1. Define a competitive equilibrium.
2. Derive the household consumption function.
3. Derive a difference equation for the equilibrium interest rate when $\mu = 0$.
4. Is the monetary steady state dynamically efficient?

2 Money in the Utility Function in an OLG Model

Demographics: In each period a cohort of constant size N is born. Each person lives for 2 periods.
Endowments: The initial old hold capital K_0 and money M. No new money is ever issued. The young are endowed with one unit of work time.
Preferences: $u(c_y^t) + \beta u(c_o^{t+1}) + v(m_t^d / p_t)$. Assume $v' > 0$. Agents derive utility from real money balances as defined below.
Technology: Output is produced with a constant returns to scale production function $F(K_t, L_t)$. The resource constraint is standard. Capital depreciates at rate δ.
Markets: There are spot markets for goods (price p_t), money, labor (wage w_t), and capital rental (price q_t).
Timing:

- The old enter period t holding money M and capital K_t.

1
• Production takes place.

• The old sell money to the young. m_t^d is the nominal per capita money holding of a young person.

• Consumption takes place.

Questions:

1. Derive a set of 4 equations that characterize optimal household behavior. Show that the household’s first-order conditions imply rate of return dominance, i.e., the real return on money is less than the real return on capital (assuming both capital and money are held in equilibrium).

2. Solve the firm’s problem.

3. Define a competitive equilibrium.

4. Assume that the utility functions u and v are logarithmic. Solve in closed form for the household’s money demand function, $m_t^d/p_t = \varphi(w_t, r_{t+1}, \pi_{t+1})$, and for its saving function, $s_{t+1} = \varphi(w_t, r_{t+1}, \pi_{t+1})$. $\pi_{t+1} \equiv p_{t+1}/p_t$.