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The Planner’s Problem with DP

The Planner’s Bellman equation is

V(k) = max
c

u(c)+βV(f (k)− c)

with state k and control c.
The FOC for c is

u′ (c) = β V ′ (k′
)

Problem: we do not know V ′.
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The Planner’s Problem with DP

Differentiate the Bellman equation to obtain the
envelope condition
(aka Benveniste-Scheinkman equation):

V ′(k) = βV ′(k′)f ′(k)+
∂c
∂k

[
u′ (c)−βV ′ (k′

)]︸ ︷︷ ︸
=0

Key point:

in the envelope condition, we can always ignore that changing the
state (k) affects the controls (c).
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The Planner’s Problem with DP
Combine the FOC and the envelope condition to sub out all terms
involving V ′:

βV ′ (k′
)
= ββV ′ (k′′

)
f ′
(
k′
)

(1)
u′ (c) = βu′

(
c′
)

f ′
(
k′
)

(2)

We obtain the same Euler equation as from the Lagrangian
approach (of course).

DP also tells us that the optimal c is a function only of k.
Therefore k′ also depends only on k:

k′ = f (k)−φ(k)

= h(k)
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Capital as control variable

There are other ways of setting up the Bellman equation.
With capital as the control:

V(k) = max
k′

u(f (k)− k′)+βV(k′)

FOC:
u′(c) = βV ′(k′)

Envelope condition
V ′(k) = u′(c)f ′(k)

The general point: We cannot choose the state variables, but we
can choose the control variables.
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Characterizing the Planner’s Solution

It is here where DP has serious advantages over the Lagrangian:
one can use results from functional analysis to establish properties
of the value function and the policy function.

In our example, it can be shown that the economy converges
monotonically from any k0 to the steady state [Sargent (2009), p.
25, fn. 2]:
Note the difference relative to the OLG economy where much
stronger assumptions are needed for this result.
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Nonstationary Dynamic Programming

What if time matters?

Case 1: Time matters because of a time-varying state variable.

▶ Example: f (kt,At) where At+1 = G(At).
▶ Solution: Add At as a state variable to the value function.

Case 2: Finite horizon problems.

▶ Example: the household lives until date T.
▶ Solution: Add t as a state variable to the value function.
▶ We have one value function per date (see below).
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Additional Constraints

Constraints are treated as in any optimization problem.

Example:
max∑

∞
t=0 β tu(ct) subject to

▶ k′ = f (k)− c
▶ k′ ≥ 0

Bellman equation:

V (k) = max
c,k′

u(c)+βV
(
k′
)
+λ

(
f (k)− c− k′

)
+µk′ (3)

First-order conditions: Kuhn Tucker for k′.
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2. Example: Non-separable Utility



Example: Non-separable Utility

Consider the following growth economy, modified to include habit
persistence in consumption.
The social planner solves

max∑
∞

t=0 β
tu(ct,ct−1)

subject to the feasibility constraints

kt+1 + ct = f (kt) (4)

f satisfies Inada conditions.

Compute and interpret the first-order necessary conditions for the
planner’s problem.
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2.1. Sequential Solution

This problem does not fit the DP approach without some
modification.
We first solve it using a Lagrangian:

Γ =
∞

∑
t=1

β
tu(f (kt)− kt+1, f (kt−1)− kt) (5)

First order conditions:

β
tu1 (t, t−1) f ′ (kt)−β

t−1u1 (t−1, t−2)

+β
t+1u2 (t+1, t) f ′ (kt)−β

tu2 (t, t−1) = 0
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Sequential Solution

Define the total marginal utility of consumption as

U′(ct−1) = u1(t−1, t−2)+βu2(t, t−1)

The Euler Equation then becomes:

U′(ct−1) = βU′(ct)f ′ (kt) (6)
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Interpretation

U′(ct−1) = βU′(ct)f ′ (kt) (7)

▶ Give up one unit of ct−1. This costs U′ (ct−1).
▶ We can increase xt−1 by 1 and raise kt by 1.
▶ We eat the results next period at marginal utility U′ (ct).
▶ We can eat

▶ the additional output f ′ (kt);
▶ the undepreciated capital 1−δ ; (zero, in this case)
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Sequential Solution

A solution of the hh problem is:
Sequences {ct,kt} that satisfy

1. the EE
2. the flow budget constraint.
3. The boundary conditions k1 given and a TVC:

lim
t→∞

β
tU′(ct)kt = 0
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2.2. DP Solution

For DP to work, it must be possible to write the problem as

V (s) = max
c

u(s,c)+β V
(
s′
)

subject to s′ = g(s,c)

where s is the state and c is the control.

The current problem does not fit that pattern:

V (k) = max u(c,c−1)+β V
(
k′
)

subject to the law of motion

k′ = f (k)− c

Nonseparable utility is the problem.
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Adding a State Variable
The solution is to define an additional state variable

z = c−1

or
z′ = c = f (k)− k′ (8)

Then the Bellman equation is

V(k,z) = max
k′

u
(
f (k)− k′,z

)
+βV

(
k′, f (k)− k′

)
Note that this looks “wrong” b/c z appears only once on the RHS,
but everything is fine...
FOC

u1(c,z) = βVk(k′,z′)−βVz(k′,z′)
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Adding a state variable
The envelope conditions are

Vz = u2(c,z)

Vk = u1(c,z)f ′(k)+βVz(.
′)f ′(k)

Now define
U′(c) = u1(c,z)+βu2(c′,z′)

Then substitute out the Vz terms:

U′(c) = βVk(.
′)

Vk = U′(c)f ′(k)

Substitute out the Vk terms and we get the same EE as with the
Lagrangian.
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The key point

If lagged variables occur in the problem, simply define new variables
for date t: zt = ct−1.
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3. Guess and Verify



Guess and Verify

In very special cases it is possible to solve for the value function in
closed form.
A common case is

▶ log utility, u(c) = ln(c), and
▶ Cobb-Douglas technology with full depreciation: f (k) = Akθ .

Then we can use the “guess and verify” method.
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Guess and Verify

The general approach is:

1. Guess a functional form for V. Stick this into the
right-hand-side of the Bellman equation.

2. Solve the max problem given the guess for V. The result is on
the left hand side a new value function, V1.

3. If V = V1 the guess was correct.

This nicely illustrates what defines a solution to the Bellman
equation.
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3.1. Guess and Verify: Example

Consider the growth model with log utility and Cobb-Douglas
production / full depreciation.
The planner solves:

max
∞

∑
t=0

β
t ln(ct)

s.t. kt+1 = A kθ
t − ct
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Guess

Guess
V(k) = E+F ln(k)

This is inspired by the hope that V should inherit the form of u.
Having capital stock k amounts to having output Akθ , which would
suggest

V(k) ∼= ln(Akθ )

= ln(A)+θ ln(k)

Note that the guess for V contains some unknown constants (E,F)
which we determine as we go along.
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First-order Conditions

FOC:
u′(c) = βV ′(k′)

or
1/c = βF/k′ (9)

Envelope condition
V ′(k) = u′(c)f ′(k)

or
F/k = f ′ (k)/c (10)
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Policy Function
We can use the FOC to obtain the policy function in terms of the
unknown parameters.

Fc = k′/β = f ′ (k)k (11)

Note that
f ′ (k)k = θ f (k) (12)

Here, we are lucky and the F drops out

k′ = h(k) = βθ f (k) (13)
c = (1−βθ) f (k) (14)

Result (as expected): the saving rate is constant.
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Recover F
Now we need to recover E and F (and make sure they are indeed
constants)
We know:

Fc = k′/β (15)
c/k′ = F/β (16)

From the policy rules:

c/k′ = (1−βθ)/θ (17)

Therefore
F =

θβ

1−θβ
(18)
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Recover E

Substitute everything we know into the Bellman equation:

E+F ln(k) = ln((1−βθ) f (k))+β {E+F ln(βθ f (k))} (19)

Note that ln(f (k)) = ln(A)+θ ln(k).
Collect all the constant terms to solve for E

E = ln(1−θβ )+ ln(A)+βE+βF ln(θβ )+βFA (20)
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Summary: Guess and Verify

1. Guess a value function (including unknown parameters).
2. Write first-order and Envelope conditions using the guess.
3. Solve for policy function.
4. Substitute policy function into Bellman equation to recover

unknown parameters (and check the guess).
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Applications

Examples where guess + verify is used:
Huggett et al. (2006), Huggett et al. (2011), Manuelli and Seshadri
(2014)
(all models of human capital accumulation)
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DP vs Lagrangian

What does DP buy us compared with a Lagrangian?

▶ With uncertainty, DP tends to be more convenient than a
Lagrangian.

▶ Results from functional analysis can often be used to find
properties of the optimal policy function such as
monotonicity, continuity, and existence.

▶ DP can have computational advantages. There are methods
for numerically approximating policy functions.
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Reading

▶ Acemoglu (2009), ch. 6. Also ch. 5 for background material
we will discuss in detail later on.

▶ Ljungqvist and Sargent (2004), ch. 3 (Dynamic
Programming), ch. 7 (Recursive CE).

▶ Stokey et al. (1989), ch. 1 is a nice introduction.
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