1 Ben-Porath Model

We study the decision problem of an infinitely lived agent in discrete time. At \(t = 0 \), the agent is endowed with \(h_0 \) units of human capital. In each period, he can invest \(l_t \) units of time, so that human capital evolves according to

\[
\begin{align*}
 h_{t+1} &= (1 - \delta) h_t + F(h_t l_t) \\
 F(hl) &= (hl)^\alpha
\end{align*}
\]

with \(0 < \alpha, \delta < 1 \). The objective is to maximize the present value of lifetime earnings, given by

\[
 Y = \sum_{t=0}^{\infty} R^{-t} w_t h_t (1 - l_t)
\]

where \(R > 0 \) is taken as given.

Questions:

1. Write down the agent’s Dynamic Program.
2. Derive and interpret the first-order condition for \(l \).
3. Derive \(V'(h) = w + (1 - \delta) R^{-1} V'(h') \).
4. Derive and interpret \(V'(h) = w \frac{R}{R + \delta} \) where \(R = 1 + r \).
5. How do the wage and the interest rate affect steady state \(h \) and \(l \)?

2 Education Costs

Consider the following version of a standard growth model with human capital. The planner solves

\[
\begin{align*}
 \max \sum_{t=1}^{\infty} \beta^t u (c_t) \\
 \text{s.t.} \\
 k_{t+1} &= (1 - \delta) k_t + x_{kt} \\
 h_{t+1} &= (1 - \delta) h_t + x_{ht} \\
 c_t + x_{kt} + \eta x_{ht} &= f(k_t, h_t)
\end{align*}
\]
with k_1 and h_1 given. Here c is consumption, k is physical capital, h is human capital, and η is a constant representing education costs. Assume that the production function is Cobb-Douglas:

$$f(k, h) = z k^\alpha h^\varepsilon$$

where z is a constant technology parameter and $\alpha + \varepsilon < 1$.

Questions:

1. Derive the first-order condition for the planner’s problem using Dynamic Programming. Define a solution in sequence language and in functional language.

2. Solve for the steady state levels of k/h and k.

3. Characterize the impact of cross-country differences in education costs (η) on output per worker in steady state. In particular, calculate the ratio of outputs per worker for two countries that only differ in their η's.