Midterm Exam. Econ720. Fall 2021

Professor Lutz Hendricks. UNC.

- Answer all questions.
- Write legibly! Write legibly! Write legibly!
- Write on only one side of each sheet.
- The total time is 75 minutes.
- The total number of points is 75 .
- A good answer should explain what you are doing. For example: "To find the consumption function, I take first order conditions, then use the budget constraint to solve for c." Then comes the math...

1 OLG Model with Public Capital

Demographics: At each date t, mass 1 of identical young are born. Each lives for two periods.
Preferences: $\mathcal{U}\left(c_{t}^{y}\right)+\beta \mathcal{U}\left(c_{t+1}^{o}\right)-\mathcal{V}\left(n_{t}\right)$ where n denotes hours worked by the young. \mathcal{V} is strictly increasing and strictly convex.
Technology: $y_{t}=A(\bar{k}) n_{t}$ where \bar{k} is public capital. Resource constraint: $y_{t}=c_{t}^{y}+c_{t}^{o}+\delta \bar{k}$.
Government: The government prints money and uses the seignorage to buy $\delta \bar{k}$ units of the good (to keep the capital stock constant). $\delta \bar{k} p_{t}=M_{t+1}-M_{t}$.
Markets: There are competitive markets for consumption goods (price p_{t}), labor (wage w_{t}), and money (numeraire).

Questions:

1. [10 points] Write out a solution to the household problem.

Answer
The household solves the standard one-asset consumption savings problem, except that labor supply is endogenous. ${ }^{1}$ Let $R_{t+1}=p_{t} / p_{t+1}$ denote the return on money.

$$
\begin{equation*}
\max _{n, s} \mathcal{U}\left(w_{t} n_{t}-s_{t}\right)+\beta \mathcal{U}\left(R_{t+1} s_{t}\right)-\mathcal{V}\left(n_{t}\right) \tag{1}
\end{equation*}
$$

Then we have a standard Euler equation $\mathcal{U}^{\prime}\left(c_{t}^{y}\right)=R_{t+1} \beta \mathcal{U}^{\prime}\left(c_{t+1}^{o}\right)$ and static condition $\mathcal{U}^{\prime}\left(c_{t}^{y}\right) w=\mathcal{V}^{\prime}\left(n_{t}\right)$. A solution consists of $c_{t}^{y}, c_{t+1}^{o}, s_{t}, n_{t}$ that satisfy the 2 focs and 2 budget constraints.
2. [15 points] Define a competitive equilibrium.

Answer

Equilibrium objects: $c_{t}^{y}, c_{t}^{o}, s_{t}, n_{t}, m_{t}, \pi_{t}, R_{t}, w_{t}$
Equations:

- household: 4
- government: $\delta \bar{k}=m_{t+1}\left(1+\pi_{t+1}\right)-m_{t}$ where $m=M / P$.
- firms: $w=A(\bar{k})$
- goods market: RC
- money market: $s_{t}=m_{t+1}\left(1+\pi_{t+1}\right)$; because young saving $p_{t} s_{t}=M_{t+1}$. The young in period t purchase the entire money stock, including the money issued in period t to pay for current capital investment.

[^0]- identity: $R_{t+1}=\left(1+\pi_{t+1}\right)^{-1}$.

3. [10 points] Show that equilibrium boils down to $\left\{n_{t}, m_{t}, \pi_{t}\right\}_{\forall t}$ that satisfy

$$
\begin{align*}
\mathcal{U}^{\prime}\left(\bar{A} n_{t}-m_{t+1}\left(1+\pi_{t+1}\right)\right) & =\mathcal{V}^{\prime}\left(n_{t}\right) / \bar{A} \tag{2}\\
& =\beta \mathcal{U}^{\prime}\left(m_{t+1}\right) \frac{1}{1+\pi_{t+1}} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
m_{t+1}\left(1+\pi_{t+1}\right)-m_{t}=\delta \bar{k} \tag{4}
\end{equation*}
$$

where $\bar{A} \equiv A(\bar{k}), 1+\pi_{t+1}=p_{t+1} / p_{t}$, and $m_{t}=M_{t} / p_{t}$.

Answer

The first line is the static condition with $w=\bar{A} \equiv A(\bar{k})$ and $s=m^{\prime}\left(1+\pi^{\prime}\right)$ substituted in. The second equation is the Euler equation with $c^{\prime o}=R^{\prime} s=m^{\prime}$ plugged in. Finally, (4) is the government budget constraint.
4. [10 points] Assume now that the young do not consume; they save their entire income. Derive a difference equation for n_{t} :

$$
\begin{equation*}
\mathcal{V}^{\prime}\left(n_{t}\right) / \bar{A}=\beta \mathcal{U}^{\prime}\left(\bar{A} n_{t+1}-\delta \bar{k}\right) \frac{\bar{A} n_{t+1}-\delta \bar{k}}{\bar{A} n_{t}} \tag{5}
\end{equation*}
$$

Answer

Now we have $s=m^{\prime}\left(1+\pi^{\prime}\right)=A(\bar{k}) n$ and therefore, using the resource constraint and old budget constraint

$$
\begin{equation*}
c^{\prime o}=m^{\prime}=A(\bar{k}) n^{\prime}-\delta \bar{k} \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
1+\pi^{\prime}=\frac{A(\bar{k}) n}{m^{\prime}}=\frac{A(\bar{k}) n}{A(\bar{k}) n^{\prime}-\delta \bar{k}} \tag{7}
\end{equation*}
$$

Substitute this into the Euler equation to obtain (5).
5. [10 points] Characterize the planner's solution, again assuming the only the old consume. The planner takes \bar{k} as given.
Does the steady state ever coincide with the equilibrium steady state (for any planner's "discount factor" ω)? Explain.

Answer

The planner solves

$$
\begin{equation*}
\max \sum_{t=0}^{\infty}-\omega^{t} \mathcal{V}\left(n_{t}\right)+\omega^{t-1} \beta \mathcal{U}\left(\bar{A} n_{t}-\delta \bar{k}\right) \tag{8}
\end{equation*}
$$

with FOC

$$
\begin{equation*}
\omega \mathcal{V}^{\prime}\left(n_{t}\right)=\beta \mathcal{U}^{\prime}\left(\bar{A} n_{t}-\delta \bar{k}\right) \bar{A} \tag{9}
\end{equation*}
$$

Unsurprisingly, the planner chooses a constant n that satisfies a standard static FOC.
Note that the equilibrium steady state is never Pareto efficient. The planner places "rate of return" $1 / \omega>1$ on the consumption of the old. In equilibrium, the transfer from young to old utility works through saving, which has a negative rate of return (because seignorage must be positive).

2 Two Period Capital Depreciation

Demographics: There is a representative agent of mass 1 who lives forever.
Preferences: $\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)$.
Endowments: k_{0} at $t=0$.
Technology: $f\left(k_{t}\right)=c_{t}+i_{t}$ with $k_{t+1}=i_{t}+i_{t-1}$. In words: capital fully depreciates after two periods of use.

Questions:

1. [10 points] Write down the planner's Bellman equation.

Answer

Define two auxiliary state variables: ${ }^{2} z_{t}=i_{t-1}$ and $x_{t}=i_{t-2}$. Then $k_{t}=z_{t}+x_{t}$. The laws of motion are: $x_{t+1}=z_{t}$ and $z_{t+1}=f\left(k_{t}\right)-c_{t}$.
Bellman: $V(x, z)=\max _{c} u(c)+\beta V(z, f(z+x)-c)$.
2. [10 points] Derive the planner's first-order conditions and define a solution to the planner's problem in sequence language.

Answer

FOC:

[^1]- $u^{\prime}(c)=\beta V_{2}\left(.^{\prime}\right) . V_{1}=\beta V_{2}\left(.^{\prime}\right) f^{\prime}(x+z)$.
- $V_{2}=\beta V_{1}\left(.^{\prime}\right)+\beta V_{2}\left(.^{\prime}\right) f^{\prime}(x+z)$.

Euler: $u^{\prime}(c)=\beta u^{\prime}\left(c^{\prime}\right) f^{\prime}\left(k^{\prime}\right)+\beta^{2} u^{\prime}\left(c^{\prime \prime}\right) f^{\prime}\left(k^{\prime \prime}\right)$.
Solution: Sequences $\left\{c_{t}, k_{t+1}\right\}$ that solve the Euler equation and the resource constraint. With boundary conditions k_{0} given and $\lim \beta^{t} u^{\prime}\left(c_{t}\right) k_{t}=0$.

End of exam.

[^0]: ${ }^{1}$ Based on a Penn State qualifying exam in 2016.

[^1]: ${ }^{2}$ Based on an example due to Per Krusell.

