Midterm Exam. Econ720. Fall 2020
Professor Lutz Hendricks. UNC.

- Answer all questions.
- Write legibly! Write legibly! Write legibly!
- Write on only one side of each sheet.
- The total time is $1: 15$ hours.
- The total number of points is 100 .
- A good answer should explain what you are doing. For example: "To find the consumption function, I take first order conditions, then use the budget constraint to solve for $c$." Then comes the math...

Special instructions for take-home exams:

- This exam is open book. You may consult books and notes (but not persons).
- To ask questions during the exam: call 919-886-6885, or text or facetime Lutz Hendricks at hendricks.lutz@gmail.com.

Your name:

## 1 Three Period OLG Model

Demographics: Time is discrete and goes on forever. In each period, a unit mass of young households are born. Each lives for 3 periods (young, middle aged, old).
Preferences: $u\left(c_{t}^{y}\right)+\beta u\left(c_{t+1}^{m}\right)+\beta^{2} u\left(c_{t+2}^{o}\right)$ with $0<\beta<1$ and $u$ strictly concave and increasing. Endowments: Each young is endowed with $h^{y}$ unit of human capital.
Technology:

- Young agents can use goods to augment their human capital according to $h_{t+1}^{m}=h^{y}+f\left(s_{t}\right)$ where $f$ is strictly concave and increasing. Workers of middle and old age supply this human capital to firms who pay wages.
- Output is produced from labor only according to

$$
\begin{equation*}
Y_{t}=h_{t}^{m} L_{t}^{m}+h_{t-1}^{m} L_{t}^{o}=C_{t}+s_{t} \tag{1}
\end{equation*}
$$

where $L_{t}^{m}\left(L_{t}^{o}\right)$ is the number of middle ages (old) persons employed and $C_{t}$ is aggregate consumption. In words: each "hour" that a worker spends working supplies $h_{t}^{m}$ units of labor to the firm, who then produces $h_{t}^{m}$ units of output from it.

Markets: There are competitive markets for goods (numeraire), human capital rental (wage $w$ ), bonds $b$ (gross interest rate $R$ ). Bonds are in zero net supply. Negative values of $b$ means that a household is borrowing.
The budget constraints for generation $t$ are

$$
\begin{align*}
c_{t}^{y} & =-b_{t+1}^{m}-s_{t}  \tag{2}\\
c_{t+1}^{m} & =w_{t+1} h_{t+1}^{m}+R_{t+1} b_{t+1}^{m}-b_{t+2}^{o}  \tag{3}\\
c_{t+2}^{o} & =w_{t+2} h_{t+1}^{m}+R_{t+2} b_{t+2}^{o} \tag{4}
\end{align*}
$$

Questions:

1. [13 points] Write down the household problem as a set of Bellman equations. The old "Bellman equation" is trivial (because the old make no choices), but write it down anyway.
A: Bellman equations:

$$
\begin{align*}
V^{y}\left(h^{y}\right) & =\max _{b^{m}, s} u\left(-b^{m}-s\right)+\beta V^{m}\left(h^{y}+f(s), b^{m}\right)  \tag{5}\\
V^{m}\left(h^{m}, b^{m}\right) & =\max _{b^{o}} u\left(w h^{m}+R b^{m}-b^{0}\right)+\beta V^{o}\left(h^{m}, b^{o}\right)  \tag{6}\\
V^{o}\left(h^{m}, b^{o}\right) & =u\left(R b^{o}+w h^{m}\right) \tag{7}
\end{align*}
$$

2. [18 points] Write down the first order and envelope conditions. Derive and interpret the Euler equations.
A: FOCs:
(a) Old: $V_{b}^{o}()=.u^{\prime}\left(c^{o}\right) R^{\prime}$ and $V_{h}^{o}()=.u^{\prime}\left(c^{o}\right) w$.
(b) Middle aged: $u^{\prime}\left(c^{m}\right)=\beta V_{b}^{o}()=.\beta u^{\prime}\left(c^{o}\right) R^{\prime}$. Envelope: $V_{b}^{m}()=.u^{\prime}\left(c^{m}\right) R$ and $V_{h}^{m}()=.u^{\prime}\left(c^{m}\right) w+\beta V_{h}^{o}($.
(c) Young: $u^{\prime}\left(c^{y}\right)=\beta V_{b}^{m}()=.\beta R^{\prime} u^{\prime}\left(c^{m}\right)$ and

$$
\begin{equation*}
u^{\prime}\left(c^{y}\right)=\beta V_{h}^{m}(.) f^{\prime}(s)=f^{\prime}(s)\left[\beta u^{\prime}\left(c^{m}\right) w^{\prime}+\beta^{2} u^{\prime}\left(c^{o}\right) w^{\prime \prime}\right] \tag{8}
\end{equation*}
$$

(d) Interpretation: We have two standard Euler equations for bonds. Nothing new here. The new equation is (8). It says: Giving up a unit of young consumption buys $f^{\prime}(s)$ units of human capital at middle and old ages. They earn wages that can be eaten.
3. [10 points] Derive and interpret

$$
\begin{equation*}
R_{t+1}=f^{\prime}\left(s_{t}\right)\left[w_{t+1}+w_{t+2} / R_{t+2}\right] \tag{9}
\end{equation*}
$$

A: Equating the two Euler equations for $u^{\prime}\left(c^{y}\right)$ and replacing $u^{\prime}\left(c^{o}\right)$ using the middle aged Euler equation gives (9). It says in words that the two assets have the same rate of return. Alternatively, observe that agents choose $s$ to maximize lifetime income:

$$
\begin{equation*}
s=\operatorname{argmax}\left[h^{y}+f\left(s_{t}\right)\right]\left[w_{t+1}+w_{t+2} / R_{t+2}\right] / R_{t+1}-s_{t} \tag{10}
\end{equation*}
$$

4. [14 points] Define a competitive equilibrium in sequence language.

## A: CE:

Sequences $\left\{c_{t}^{y}, c_{t}^{m}, c_{t}^{o}, s_{t}, b_{t}^{m}, b_{t}^{o}, h_{t}^{m}, L_{t}^{m}, L_{t}^{o}, C_{t}\right\}$ and $\left\{w_{t}, R_{t}\right\}$ that satisfy:
(a) Consumption, $s$, human capital, and bond holdings solve the household problem, given prices.
(b) Firm first order conditions: $w_{t}=1$
(c) Market clearing: goods (R.C.) where $C_{t}=c_{t}^{y}+c_{t}^{m}+c_{t}^{o}$; labor ( $L_{t}^{m}=L_{t}^{o}=1$ ); bonds $\left(b_{t}^{m}+b_{t}^{o}=0\right)$.

We have 12 objects and 13 equations ( 7 for the household, 1 firm, 4 market clearing, definition of $C$ ).
5. [15 points] Now consider the same economy decentralized using Arrow-Debreu trading. State the household problem.
A: Arrow-Debreu household solves $\max u\left(c_{t}^{y}\right)+\beta u\left(c_{t+1}^{m}\right)+\beta^{2} u\left(c_{t+2}^{o}\right)$ subject to the budget constraint

$$
\begin{equation*}
p_{t}\left(c_{t}^{y}+s_{t}\right)+p_{t+1} c_{t+1}^{m}+p_{t+2} c_{t+2}^{o}=\left[h^{y}+f\left(s_{t}\right)\right]\left[w_{t+1}+w_{t+2}\right] \tag{11}
\end{equation*}
$$

6. [17 points] Derive the household's first-order conditions and show that

$$
\begin{equation*}
u^{\prime}\left(c_{t}^{y}\right)=f^{\prime}\left(s_{t}\right)\left[\beta u^{\prime}\left(c_{t+1}^{m}\right)+\beta^{2} u^{\prime}\left(c_{t+2}^{o}\right)\right] \tag{12}
\end{equation*}
$$

(which we also obtained from the sequential trading equilibrium). Hint: the firm's first-order condition is $w_{t}=p_{t}$ where $p_{t}$ is the price of the good at $t$.
A: First order conditions:

$$
\begin{align*}
u^{\prime}\left(c_{t}^{y}\right) & =\lambda_{t} p_{t}  \tag{13}\\
\beta u^{\prime}\left(c_{t+1}^{m}\right) & =\lambda_{t} p_{t+1}  \tag{14}\\
\beta^{2} u^{\prime}\left(c_{t+2}^{o}\right) & =\lambda_{t} p_{t+2}  \tag{15}\\
p_{t} & =f^{\prime}(s)\left[w_{t+1}+w_{t+2}\right] \tag{16}
\end{align*}
$$

Eliminating $\lambda_{t}$ we get two standard Euler equations with "interest rates" $p_{t} / p_{t+1}$. Applying $w_{t}=p_{t}$ (the firm's FOC), we get the more intuitive Euler equation (12).
7. [13 points] Define a competitive equilibrium.

A: Competitive equilibrium:
Sequences $\left\{c_{t}^{y}, c_{t}^{m}, c_{t}^{o}, s_{t}, h_{t}^{m}, L_{t}^{m}, L_{t}^{o}\right\}$ and $\left\{p_{t}, w_{t}\right\}$ that satisfy
(a) household (5 equations)
i. firm: $w_{t}=p_{t}$
ii. market clearing: goods $(\mathrm{RC})$, labor $\left(L_{t}^{m}=L_{t}^{o}=1\right)$.

## End of exam.

