Final Exam. Econ720. Fall 2011

Professor Lutz Hendricks

- Answer all questions.
- Write legibly! Write legibly! Write legibly!
- Write on only one side of each sheet.
- Clearly number your answers.
- The total time is 2 hours.
- A good answer should explain what you are doing. For example: "To find the consumption function, I take first order conditions, then use the budget constraint to solve for c." Then comes the math...

1 Growth Model With Human Capital

Demographics: A single infinitely lived household.
Preferences: $\int_{0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t$ with $u(c)=\frac{c^{1-\sigma}}{1-\sigma}$.
Endowments: k, h at $t=0$.
Technologies:

- Sector 1 produces consumption and capital goods: $G\left(k_{1}, h_{1}\right)=c+I_{1}$ where $I_{1}=\dot{k}+\delta k$ and $k=k_{1}+k_{2}$.
- Sector 2 produces human capital: $H\left(k_{2}, h_{2}\right)=I_{2}$ where $I_{2}=\dot{h}+\delta h$ and $h=h_{1}+h_{2}$.
- G and H are constant returns to scale.

Government: The government taxes capital and human capital income. It rebates revenues as a lump-sum transfer T. The budget constraint is given by $T=\tau_{k} q_{k} k+\tau_{h} q_{h} h$.

Market arrangements: There is a representative firm in each sector. Firms rent capital and human capital at rental prices q_{k} and q_{h}, respectively. Good 1 is the numeraire. The price of good 2 is p. The household's budget constraint is given by

$$
\begin{equation*}
c+I_{1}+p I_{2}=\left(1-\tau_{k}\right) q_{k} k+\left(1-\tau_{h}\right) q_{h} h+T \tag{1}
\end{equation*}
$$

The firms' first-order conditions are standard: $q_{k}=G_{1}=p H_{1} . q_{h}=G_{2}=p H_{2}$.

Questions:

1. [15 points] Derive the household's first-order conditions.
2. [10 points] Derive the household's Euler equation $g(c)=(r-\rho) / \sigma$ with

$$
\begin{equation*}
r=\left(1-\tau_{k}\right) q_{k}-\delta=\frac{\left(1-\tau_{h}\right) q_{h}}{p}+\frac{\dot{p}}{p}-\delta \tag{2}
\end{equation*}
$$

3. [20 points] Derive 4 equations that solve for the balanced growth values of g, z_{1}, z_{2}, r where g is the balanced growth rate of (c, k, h) and $z_{i}=k_{i} / h_{i}$. Note that p is constant on the balanced growth path. Remember that, with constant returns to scale, marginal products are functions of z_{i}.
4. [10 points] For the special case where $H\left(k_{2}, h_{2}\right)=B h_{2}$ show that taxes on sector 1 do not affect the balanced growth rate. What is the intuition for this result?

2 McCall Model With Stochastic Wages

Consider a version of the McCall model where agents' wages change over time on the job.
Demographics: We study a single, infinitely lived household in partial equilibrium.
Preferences: $\sum_{t=0}^{\infty} \beta^{t} y_{t}$ where y_{t} is income.
Timing:

- Enter the period either as an unemployed worker (value V_{U}) or as employed worker with wage $w($ value $V(w))$.
- If unemployed, earn c and draw a wage offer with probability α.
- If employed, earn w and draw a new wage with probability λ.
- The wage offer and new wage w^{\prime} are both drawn from the distribution $F(W)=\operatorname{Pr}\left(w^{\prime} \leq W\right)$ with support $[0, B]$.
- Choose whether to accept or reject w^{\prime}.
- If accept: work at wage w^{\prime} next period.
- If reject: be unemployed in the next period.

Employed and unemployed agents follow a reservation wage strategy with the same reservation wage \bar{w}. Hence $V_{U}=V(\bar{w})=V(w)$ for $w \leq \bar{w}$. You need not show that this is true.

Questions:

1. [15 points] State the Bellman equation for an unemployed worker.
(a) Explain it in words.
(b) Show that

$$
\begin{equation*}
(1-\beta) V_{U}=c+\beta \alpha Q \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\int_{\bar{w}}^{B}\left(V\left(w^{\prime}\right)-V_{U}\right) d F\left(w^{\prime}\right) \tag{4}
\end{equation*}
$$

2. [15 points] State the Bellman equation of an employed worker. For the continuation value, keep in mind that the worker gets a new offer w^{\prime} with probability λ, but he can refuse $V\left(w^{\prime}\right)$ and instead choose V_{U}.
(a) Explain it in words.
(b) Show that

$$
\begin{equation*}
(1-\beta) V(\bar{w})=\bar{w}+\beta \lambda Q \tag{5}
\end{equation*}
$$

3. [10 points] Find the reservation wage when $\alpha=\lambda$.
(a) Explain what you find.
4. [5 points] Show that $\bar{w}>c$ when $\alpha>\lambda$.
(a) What is the intuition?

3 Answers

3.1 Answer: Growth Model With Human Capital ${ }^{1}$

1. Hamiltonian:

$$
\begin{equation*}
H=u(c)+\lambda\left[I_{1}-\delta k\right]+\mu\left[I_{2}-\delta h\right] \tag{6}
\end{equation*}
$$

where c is given by the b.c. FOC:

$$
\begin{align*}
I_{1}: u^{\prime}(c) & =\lambda \tag{7}\\
I_{2}: u^{\prime}(c) p & =\mu \tag{8}\\
k: \dot{\lambda} & =\rho \lambda+u^{\prime}(c)\left(1-\tau_{k}\right) q_{k}-\lambda \delta \tag{9}\\
h: \dot{\mu} & =\rho \mu+u^{\prime}(c)\left(1-\tau_{h}\right) q_{h}-\mu \delta \tag{10}
\end{align*}
$$

2. The first Euler equation follows directly from first-order conditions using the standard argument. The second Euler equation follows from

$$
\begin{equation*}
-g(\mu)=\sigma g(c)-\dot{p} / p=\frac{\left(1-\tau_{h}\right) q_{h}}{p}-\delta-\rho \tag{11}
\end{equation*}
$$

3. Balanced growth path: g, z_{1}, z_{2}, r that satisfy:

$$
\begin{align*}
g & =\frac{r-\rho}{\sigma} \tag{12}\\
r & =\left(1-\tau_{k}\right) G_{1}\left(1, z_{1}\right)-\delta \tag{13}\\
r & =\left(1-\tau_{h}\right) H_{2}\left(1, z_{2}\right)-\delta \tag{14}\\
\frac{G_{1}}{G_{2}} & =\frac{H_{1}}{H_{2}} \tag{15}
\end{align*}
$$

4. Now $H_{2}=B$ so that $r=\left(1-\tau_{h}\right) B-\delta$. The sector with the linear technology fixes the after-tax interest rate. Taxing sector 1 merely changes levels. z_{1} adjusts to maintain equal after-tax interest rates in both sectors.

3.2 Answer: McCall Model ${ }^{2}$

1. Bellman equation for an unemployed worker:

$$
\begin{equation*}
V_{U}=c+\beta\left[\alpha \int \max \left\{V\left(w^{\prime}\right), V_{U}\right\} d F\left(w^{\prime}\right)+(1-\alpha) V_{U}\right] \tag{16}
\end{equation*}
$$

[^0]or
\[

$$
\begin{equation*}
(1-\beta) V_{U}=c+\beta \alpha \int \max \left\{V\left(w^{\prime}\right)-V_{U}, 0\right\} d F\left(w^{\prime}\right) \tag{17}
\end{equation*}
$$

\]

(a) Get c today. With probability α get to choose between w^{\prime} and c tomorrow.
(b) Break the integral into 2 pieces (below and above \bar{w}) to get the answer.
2. Bellman equation for a worker with wage w :

$$
\begin{equation*}
V(w)=w+\beta\left[\lambda \int \max \left\{V\left(w^{\prime}\right), V_{U}\right\} d F\left(w^{\prime}\right)+(1-\lambda) V(w)\right] \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
(1-\beta) V(w)=w+\beta \lambda \int_{\bar{w}}^{B} V\left(w^{\prime}\right) d F\left(w^{\prime}\right)+\beta \lambda \int_{0}^{\bar{w}} V_{U} d F\left(w^{\prime}\right)-\beta \lambda V(w) \tag{19}
\end{equation*}
$$

(a) Get w today. With probability λ, face the same choice as an unemployed worker with offer w^{\prime}.
(b) Subtract V_{U} so that the first integral in 19 becomes Q and the second becomes 0 . Now we have to add $\beta \lambda V_{U}$ back in, which cancels against $\beta \lambda V(\bar{w})$.
3. Reservation wage: With $V(\bar{w})=V_{U}$ we have

$$
\begin{align*}
(1-\beta) V_{U} & =\bar{w}+\beta \lambda Q \tag{20}\\
& =c+\beta \alpha Q \tag{21}
\end{align*}
$$

Value of unemployment:

$$
\begin{equation*}
(\alpha-\lambda) V_{U}=\frac{\beta}{1-\beta}[\alpha \bar{w}-\lambda c] \tag{22}
\end{equation*}
$$

Perhaps easier:

$$
\begin{equation*}
\bar{w}-c=\beta(\alpha-\lambda) Q \tag{23}
\end{equation*}
$$

If $\alpha=\lambda: \bar{w}=c$. The reason is that the continuation value does not depend on employment status.
4. If $\alpha>\lambda: \bar{w}>c$. Being unemployed has a search value. So the agent holds out for better wage offers.

Extension: Solving for the reservation wage: Add and subtract $V_{U}-V(w)$ in Q :

$$
\begin{equation*}
(1-\beta) V(w)=w+\beta \lambda \int_{\bar{w}}^{B}\left[V\left(w^{\prime}\right)-V_{U}\right] d F\left(w^{\prime}\right)+\beta \lambda\left[V_{U}-V(w)\right] \tag{24}
\end{equation*}
$$

Now the integral is the same as in the V_{U} equation. difference the two equations to get

$$
\begin{equation*}
(1-\beta)\left[V(w)-V_{U}\right]=w-\bar{w}+\beta \lambda\left[V_{U}-V(w)\right] \tag{25}
\end{equation*}
$$

Solve for $V(w)-V_{U}=\frac{w-\bar{w}}{1-\beta+\beta \lambda}$. Sub into the integral in the $V(w)$ equations and evaluate the integral. Done.

[^0]: ${ }^{1}$ Based on Rebelo, S.; Stokey, NL (1995). Growth Effects of Flat-Rate Taxes, Journal of Political Economy, 103, 519-550.
 ${ }^{2}$ Based on Rogerson, R., Shimer, R., \& Wright, R. (2005). Search-Theoretic models of the labor market: A survey. Journal of Economic Literature, 43(4), 959-988.

