Arrow-Debreu and Sequential Trading

Prof. Lutz Hendricks

Econ720

August 26, 2019
Introduction

Macro models are dynamic (have many periods).

Then we have a choice of how to represent equilibrium:

▶ Arrow-Debreu: all trading takes place at date 0
▶ Sequential trading: markets open in each period

This is where the details matter (units of account, Walras’ law, ...)
Two Period Example

Demographics:

- N identical households live for 2 periods, $t = 1, 2$.

Commodities:

- there is one good in each period

Preferences: $u(c_1, c_2)$

Endowments: e_t

“Technology”: $c_t = e_t$
Markets

Now we have a choice between 2 equivalent arrangements

- Arrow-Debreu: all trades take place at $t = 1$
- Sequential trading: markets open in each period
Arrow-Debreu Trading

The arrangement:

- All trades take place at $t = 1$
- Agents can buy and sell goods for delivery at any date t
- Prices are p_t

Can we normalize prices to 1?

Surprise:
If we write out this model, it looks exactly like the static 2 good model (see above).
Arrow-Debreu Equilibrium

Household budget constraint:

\[\sum_{t} p_t e_t = \sum_{t} p_t c_t \] (1)

Interpretation:
The household sells \(e_t \) to and buys \(c_t \) from the Walrasian auctioneer at a single trading date.

Market clearing:

\[e_t = c_t \] (2)

▶ Again the same as resource constraints.
Equilibrium

Objects: $c_t, p_t, \ t = 1, 2$

Equations:

- Household policy rules: $c_t(p_1, p_2)$ implicitly defined by first-order condition and budget constraint
- Market clearing: $e_t = c_t$

Notes:

- only p_2/p_1 is determined in equilibrium (choice of unit of account)
- only one equation is redundant by Walras’ law (why?)
Equivalence of Dates and Goods

Fact

A model with T goods is equivalent to a model with T periods.

This is only true under “complete markets”

- roughly: there are markets that allow agents to trade goods across all periods and states of the world
- we will talk about details later
Sequential Trading

An alternative trading arrangement.
Markets open at each date.
Only the date \(t \) good can be purchased in the period \(t \) market.

Now we have **one numeraire for each trading period**: \(p_t = 1 \).
We need assets to transfer resources between periods.
Markets

At each date we have

1. a market for goods \((p_t = 1)\);
2. a market for 1 period discount bonds (price \(q_t\))

A discount bond pays 1 unit of \(t + 1\) consumption.
Digression: Modeling bonds

Definition

A one period bond promises to pay one unit of consumption in $t + 1$.

Call its price q_t.

Then the real interest rate is: $R_{t+1} = 1/q_t$.

What is a real interest rate?

Alternative normalization:

- set $q_t = 1$ and let each bond pay R_{t+1} units of consumption
- why can I do this?
Household problem

Now we have one budget constraint per period:

\[e_t + b_{t-1} = c_t + b_t q_t \]

(3)

With \(b_0 = 0 \).

Household solves:

\[\max_{b_1} u(e_1 - b_1 q_1, e_2 + b_1) \]

(4)
Household solution

FOC:

\[u_1 q_1 = u_2 \] \hspace{1cm} (5)

\(q_1 \) is the relative price of period 2 consumption.

Give up 1 unit of \(c_1 \) and get \(1/q_1 \) units of \(c_2 \).

Solution: \(c_1, c_2, b_1 \) that solve FOC and 2 budget constraints.
Market Clearing

- Goods: \(e_t = c_t \)
- Bonds: \(b_t = 0 \)

Why does bond market clearing look so odd?
Equivalence

Note that the relative price is the same under both trading arrangements:

\[p = q = \frac{u_2}{u_1} \]

Fact

When markets are complete, Arrow-Debreu and sequential trading equilibria are identical.
Macro is micro

or

IS-LM is dead. Long-live general equilibrium

- The method outlined here is central to all of (macro) economics.
- Being able to translate a description of an economy into the definition of a competitive equilibrium is an important skill.
Final example

Demographics: There are N households. Each lives for $T > 1$ periods.

Preferences: $\sum_{t=1}^{T} u(c_{1,t}, \ldots, c_{J,t})$ where J is the number of goods available in each period.

Endowments: Household i receives $e_{i,j,t}$.

Technologies: Endowments can only be eaten in the period they are received.

- Resource constraint:

Markets:

- Sequential trading: there are competitive markets for the J goods; there are one period discount bonds in each period.
- Arrow-Debreu: the $J \times T$ goods are traded in $t = 1$.
Final example: Equilibrium
Krusell (2014), ch. 5 talks about Arrow-Debreu versus sequential trading.
References