Inflation Expectations

Prof. Lutz Hendricks

Econ520

September 21, 2021

What happens when monetary policy affects inflation expecations? In this section you will learn:

- 1. how monetary policy affects nominal and real interest rates in the short and medium run
- 2. why monetary policy is neutral in the medium run but not in the short run

- Spending decisions (C and I) depend on the **real** interest rate But the Fed controls the **nominal** interest rate
- When the Fed changes the nominal rate, it also changes inflation expectations
- The real rate may not move the way the Fed wants.

Nominal vs Real Interest rates

Nominal interest rate: i

- the relative price of **money** at t + 1 vs t
- give up 1 dollar at t and receive (1+i) dollars at t+1
- Real interest rate: r
 - the relative price of **goods** at t+1 vs t
 - give up 1 unit of consumption at t and receive (1+r) units at t+1

Real Interest Rate

$$1 + r_t = (1 + i_t)P_t / P_{t+1} \tag{1}$$

or approximately

$$r_t = i_t - \pi_t \tag{2}$$

where $\pi_t = P_{t+1}/P_t - 1$ is the inflation rate

Nominal and Real Rates Can Diverge

1981: high nominal / 0 real interest rate 2006: low nominal / positive real interest rate The point: nominal and real rates often diverge

Deflation and Depressions

- One reason why deflation is dangerous:
 - it drives up real interest rates
 - even when nominal rates hit 0
- Great Depression example
 - ► 1931: i = 3.1%, $\pi^e = -9.2\%$, r = 12.3%
 - monetary policy cannot keep real interest rates low

Model with Inflation Expectations

The Model

We add inflation expectations to the model Short run: IS/LM Medium run: AS/AD

We resolve an old confusion:

Does loose monetary policy raise or lower interest rates?

Short-run IS/LM Model

$$IS: Y = C(Y - T) + I(Y, i - \pi^{e}) + G$$

$$LM: M/P = YL(i)$$
(3)
(4)

Note:

- 1. demand for goods depends on $r = i \pi^e$
- 2. expected inflation matters, not realized inflation
- 3. money demand depends on the nominal rate *i* [why?]

Output, Y

Expected inflation now shifts IS

Short-run Analysis

Short run: take π^e as fixed. Monetary policy works.

Faster money supply growth. LM shifts out.

Medium-run Analysis

- Assume a constant money growth rate
- Inflation equals money growth: $\pi = g(M)$ M/P is constant over time

Assume constant money growth, g(M)Inflation (expectations) adjust: $\pi^e = \pi$, $P = P^e$ Then we have:

1. IS:
$$Y = C(Y - T) + G + I(Y, r)$$

2. LM: $M/P = YL(r + \pi)$
3. AS: $Y = F\left(\frac{P}{P^e}\frac{1}{1+m}, z\right) = F\left(\frac{1}{1+m}, z\right)$

Endogenous: $Y, r, \pi, M/P$

Medium-run Analysis

AS with $P^e = P$ fixes $Y = Y_n$:

$$F\left(\frac{1}{1+m},z\right) = \mathbf{Y_n} \tag{5}$$

With $Y = Y_n$ IS determines *r*:

$$Y_n = C(Y_n - T) + G + I(Y_n, \mathbf{r_n}) \to r_n$$

Constant g(M) "should" imply constant inflation. Then from LM: M/P must be constant:

 $M/P = Y_n L(r_n + g(M))$

Constant M/P implies: $\pi = g(M)$ LM determines real money supply

Medium-run graph

M/P adjusts (shifting LM) to support the equilibrium r.

Money is neutral and cannot affect M/P or Y

A 10% increase in money growth eventually leads to

- ▶ a 10% increase inflation
- ▶ a 10% increase in the nominal interest rate
- ▶ no change in the real interest rate

Transition Short to Medium Run

- Start from $Y = Y_n$ with $r = r_n$.
- $g(M) \uparrow$ permanently.
- Short run:
 - monetary expansion lowers *i* (LM shifts right)
 - with fixed π^e : $r \downarrow$
 - ► AD shifts right. $Y \uparrow$, $\pi \uparrow$
- Transition:
 - as long as $Y > Y_n$: π keeps rising
 - inflation erodes $M/P \implies i \uparrow \implies r \downarrow$
- This continues until $Y = Y_n$

Permanent Increase in Money Growth

- *i* initially falls, but eventually rises.
- r initially falls, but eventually returns to r_n

Evidence

Short run: Money growth reduces the real interest rate Medium run: Real interest rate is independent of money growth (inflation) (Fisher effect)

Conclusions

- 1. The Fed controls the long-run nominal interest rate but not the real interest rate
- 2. Fisher hypothesis: in the end, inflation just raises prices.
- Inflation expectations are as important as interest rates. This opens up an entirely new set of monetary policy tools. "Forward guidance"

Questions for Review

- 1. Imagine the Fed could credibly commit to an inflation target of 2%.
 - 1.1 Would you expect to see a stable Phillips curve?
 - 1.2 Would this render the Fed very powerful?
- 2. Suppose you are the Fed chair at the tail end of the 1970s high inflation period. You want to bring inflation down without causing a big recession (a la 1981).
 - 2.1 What could you do?
 - 2.2 How could Congress help?
- 3. Why is NAIRU an important indicator for the Fed?

Blanchard and Johnson (2013), ch. 14

Blanchard, O. and D. Johnson (2013): *Macroeconomics*, Boston: Pearson, 6th ed.