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Topics

Optimal control is a method for solving dynamic optimization
problems in continuous time.
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Example: Growth Model

A household chooses optimal consumption to

max
∫ T

0
e−ρtu[c(t)]dt (1)

subject to

k̇(t) = rk(t)− c(t) (2)
c(t) ∈ [0, c̄] (3)

k(0) = k0,given (4)
k(T)≥ 0 (5)
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Generic Optimal control problem
Choose functions of time c(t) and k (t) so as to

max
∫ T

0
v[k(t),c(t), t]dt (6)

Constraints:
1. Law of motion of the state variable k (t):

k̇(t) = g[k(t),c(t), t] (7)

2. Feasible set for control variable c(t):

c(t) ∈ Y (t) (8)

3. Boundary conditions, such as:

k(0) = k0,given (9)
k(T)≥ kT (10)
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Generic Optimal control problem

▶ c and k can be vectors.
▶ Y (t) is a compact, nonempty set.
▶ T could be infinite.

▶ Then the boundary conditions change

▶ Important: the state cannot jump; the control can.
▶ Note that this looks exactly like the kind of problem that could

be solved with Dynamic Programming in discrete time.
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2. A Recipe for Solving Optimal Control
Problems



Step 1: Hamiltonian

H(t) = v(k,c, t)+µ(t)g(k,c, t)︸ ︷︷ ︸
˙k(t)

(11)

µ is essentially a Lagrange multiplier (called a co-state).

Intuition:

▶ similar to the dynamic program: current utility + continuation
value (but not quite)

▶ v(k,c, t): current utility
▶ µ (t): the marginal value of increasing k for the future
▶ g(k,c, t): captures how current actions affect future k
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Step 2: First-order conditions

Derive the first order conditions which are necessary for an
optimum:

∂H/∂c = 0 (12)
∂H/∂k = −µ̇ (13)

Intuition below ...
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Step 3: TVC

Impose the transversality condition:

▶ for finite horizon:
µ (T) = 0 (14)

▶ for infinite horizon:
lim
t→∞

H(t) = 0 (15)

This depends on the terminal condition (see below).
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Step 4: Solution

A solution is the a set of functions [c(t),k(t),µ(t)] which satisfy

▶ the FOCs
▶ the law of motion for the state
▶ the boundary / transversality conditions
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2.1. Intuition ∂H/∂c = 0

Maximize Hamiltonian w.r.to control.

Implies
vc +µgc = 0 (16)

vc (k,c, t) picks up current marginal utility of c

µ (t) is marginal value of additional “future” k.
µ (t)gc (k,c, t) picks up change in continuation value
(change in k̇ times marginal value of future k)
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Intuition: ∂H/∂k =−µ̇

Implies
vk (k,c, t)+µgk (k,c, t) =−µ̇ (17)

Think of this as
[∂H/∂k]/µ =−µ̇/µ (18)

▶ µ̇/µ is the growth rate of marginal utility
▶ [∂H/∂k]/µ is like a rate of return (marginal value of k now

versus the future)
▶ if the rate of return is high, it is optimal to postpone

consumption and let it grow
▶ then marginal utility declines over time
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2.2. Example: Growth Model

max
∫

∞

0
v(k,c, t)dt →max

∫
∞

0
e−ρtu(c(t))dt (19)

subject to

k̇ (t) = g(k,c, t)≡ f (k (t))− c(t)−δk (t) (20)
c(t) ∈ Y (t)≡ [0, f (kmax)−δkmax] (21)

k (0) given (22)

For this to work, we need to bound k ≤ kmax.
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Growth Model: Hamiltonian

H (k,c,µ) = e−ρtu(c(t))︸ ︷︷ ︸
v(k,c,t)

+µ (t) [f (k (t))− c(t)−δk (t)]︸ ︷︷ ︸
k̇

(23)

Necessary conditions:

Hc = e−ρtu′ (c)−µ = 0

Hk = µ
[
f ′ (k)−δ

]
=−µ̇
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Interpretation

µ = e−ρtu′ (c) (24)

µ is indeed the marginal value of capital

▶ the same as the marginal value of consumption

Note: µ is discounted to date 0

▶ it falls over time, even in steady state

−g(µ) = f ′ (k)−δ (25)

When the rate of return is high, marginal utility falls over time

▶ getting paid to postpone consumption
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Substitute out the co-state

FOC imply two expressions for g(µ):

g(µ) = δ − f ′ (k) (26)
= g

(
e−ρtu′ (ct)

)
(27)

The growth rate of marginal utility (MRS) equals the “interest rate”
(relative price).

Using the growth rate rule:

g
(
e−ρtu′ (c)

)
=−ρ +g

(
u′ (c)

)
(28)

=−ρ −σ (c)g(c) (29)

where σ (c) =−u′′/u′×c is the elasticity of marginal utility w.r.to c
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Substitute out the co-state

Direct derivation:

g
(
e−ρtu′ (ct)

)
=

d ln(e−ρtu′ (ct))

dt
(30)

=
d
dt

[
−ρt+lnu′ (ct)

]
(31)

=−ρ +
u′′ (ct) ċt

u′ (ct)
(32)
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Euler Equation

−g(µ) = f ′ (k)−δ = ρ +σ (c)g(c) (33)

g(c) =
f ′ (k)−δ −ρ

σ (c)

Analogous to the discrete time version:

ct+1

ct
=
(
βR′)1/σ(c) (34)

Solution: ct,kt that solve Euler equation and resource constraint,
plus boundary conditions.
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2.3. Details

First order conditions are necessary, not sufficient.
They are necessary only if we assume that

1. a continuous, interior solution exists;
2. the objective function v and the constraint function g are

continuously differentiable.

Acemoglu (2009), ch. 7, offers some insight into why the FOCs are
necessary.
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Details

If there are multiple states and controls, simply write down one
FOC for each separately:

δH/δci = 0

∂H/∂kj = −µ̇j

There is a large variety of cases depending on the length of the
horizon (finite or infinite) and the kinds of boundary conditions.

▶ Each has its transversality condition (see Leonard and
Van Long 1992).
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Equality constraints
Equality constraints of the form

h[c(t),k(t), t] = 0 (35)

are simply added to the Hamiltonian as in a Lagrangian problem:

H(t) = v(k,c, t)+µ(t)g(k,c, t)+λ (t)h(k,c, t) (36)

FOCs are unchanged:

∂H/∂c = 0

∂H/∂k = −µ̇

For inequality constraints:

h(c,k, t)≥ 0; λh = 0 (37)
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3. Sufficient Conditions



Sufficient conditions

First-order conditions are sufficient, if the programming problem is
concave.
This can be checked in various ways.
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Sufficient conditions I

The objective function and the constraints are concave functions of
the controls and the states.

▶ The co-state must be positive.

This condition is easy to check, but very stringent.

In the growth model:

▶ u(c) is concave in c (and, trivially, k)
▶ f (k)−δk− c is concave in c and k
▶ µ = u′ (c)> 0
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Sufficient Conditions II

(Mangasarian) First-order conditions are sufficient, if
the Hamiltonian is concave in controls and states,
where the co-state is evaluated at the optimal level (and held fixed).

This, too is very stringent.

Note: Conditions I =⇒ II (the sum of two concave functions is
concave).
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In the growth model

∂H/∂c = u′ (c)−µ

∂H/∂k = µ [f ′ (k)−δ ]

∂ 2H/∂c2 = u′′ (c)< 0

∂ 2H/∂k2 = µf ′′ (k)< 0

∂ 2H/∂c∂k = 0

Therefore: weak joint concavity (because we know that µ > 0)
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Sufficient Conditions III

Arrow and Kurz (1970)

▶ First-order conditions are sufficient, if the maximized
Hamiltonian is concave in the states.

▶ If the maximized Hamiltonian is strictly concave in the states,
the optimal path is unique.

Maximized Hamiltonian:
Substitute out the controls, so that the Hamiltonian is only a
function of the states. (Keep the co-states).

This is less stringent and by far the most useful set of sufficient
conditions.
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In the growth model

Optimal consumption obeys u′ (c) = µ or c = u′−1 (µ)

Maximized Hamiltonian:

Ĥ = u
(
u′−1 (µ)

)
+µ

[
f (k)−δk−u′−1 (µ)

]
(38)

We have ∂ Ĥ/∂k > 0 and ∂ 2Ĥ/∂k2 = µf ′′ (k)< 0.
Ĥ is strictly concave in k.
Necessary conditions yield a unique optimal path.
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4. Recipe with Discounting



Discounting: Current value Hamiltonian

Problems with discounting:

▶ Current utility depends on time only through an exponential
discounting term e−ρt.

The generic discounted problem is

max
∫ T

0
e−ρtv[k(t),c(t)]dt (39)

subject to the same constraints as above.
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Shortcut

Discounted Hamiltonian (drop the discounting term):

H = v(k,c)+µg(k,c) (40)

FOCs:

∂H/∂c = 0 (41)
∂H/∂k = µ(t)ρ︸ ︷︷ ︸

added

− µ̇(t) (42)

and the TVC
lim

T→∞
e−ρT

µ(T)k(T) = 0 (43)
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Deriving the Shortcut

Start from the standard recipe:

H (t) = e−ρtv(k,c)+ µ̂g(k,c) (44)

∂H
∂ct

= 0 =⇒ e−ρtvc(kt,ct) =−µ̂tgc(kt,ct) (45)

∂H
∂kt

= e−ρtvk(kt,ct)+ µ̂tgk(kt,ct) =− ˙̂µt (46)

µ̂ is the discounted marginal value of k.
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Deriving the Shortcut

Let
µt = eρt

µ̂t (47)

and multiply through by eρt:

∂H
∂ct

= 0 =⇒ eρte−ρt︸ ︷︷ ︸
1

vc(kt,ct) =−eρt
µ̂t︸︷︷︸

µt

gc(kt,ct) (48)

vc(t) =−µtgc(t)

This is the standard FOC, but with µ instead of µ̂ .
µ is the current marginal value of k.
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Deriving the Shortcut

vk(t)+ eρt
µ̂tgk(t) =−eρt ˙̂µt (49)

Substitute out ˙̂µt using

µ̇t =
deρtµ̂t

dt
= ρµt + eρt ˙̂µt

we have
vk(t)+µtgk(t) =−µ̇t +ρµt

This is the standard condition with an additional ρµ term.
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Example: Growth Model

max
∫

∞

0
e−ρtu(c(t))dt (50)

subject to

k̇ (t) = f (k (t))− c(t)−δk (t) (51)
c(t) ∈ [0, f (kmax)−δkmax] (52)

k (0) given (53)
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Discounted Hamiltonian

H (k,c,µ) = u(c(t))+µ (t) [f (k (t))− c(t)−δk (t)]︸ ︷︷ ︸
k̇

(54)

Necessary conditions:

Hc = u′ (c)−µ = 0

Hk = µ
[
f ′ (k)−δ

]
= ρµ − µ̇

Euler equation:

−g(µ) = f ′ (k)−δ −ρ (55)
=−g

(
u′ (c)

)
(56)

= σ (c)g(c) (57)

or

g(c) =
f ′ (k)−δ −ρ

σ (c)
(58)
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5. Transversality Conditions



5.1. Finite horizon: Scrap value problems
The horizon is T.
The objective function assigns a scrap value to the terminal state
variable: e−ρTφ(k(T)):

max
∫ T

0
e−ρtv[k(t),c(t), t]dt+ e−ρT

φ(k(T)) (59)

Hamiltonian and FOCs: unchanged.
The TVC is

µ (T) = φ
′ (k (T)) (60)

Intuition:

▶ µ is the marginal value of the state k.
▶ Recall that µ is the current value of k.
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Scrap value examples

Household with bequest motive

U =
∫ T

0
e−ρtu(c(t))+ e−ρtV (kT) (61)

with k̇ = w+ rk− c.
TVC:

µ (T) = u′ (c(T)) = V ′ (kT) (62)
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Scrap value examples

Maximizing the present value of earnings

Y =
∫ T

0
e−rtwh(t) [1− l(t)] (63)

subject to ḣ(t) = Ah(t)α l(t)β −δh(t)

Scrap value is 0.
TVC: µ (T) = 0.
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5.2. Infinite horizon TVC

The finite horizon TVC with the boundary condition k (T)≥ kT is
µ (T) = 0.

▶ Intuition: capital has no value at the end of time.

But the infinite horizon boundary condition is NOT limt→∞ µ (t) = 0.
The next example illustrates why.
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Infinite horizon TVC: Example

max
∫

∞

0
[ln(c(t))− ln(c∗)]dt

subject to

k̇ (t) = k (t)α − c(t)−δk (t)

k (0) = 1

lim
t→∞

k (t) ≥ 0

c∗ is the max steady state (golden rule) consumption.
No discounting - subtracting c∗ makes utility finite.
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Infinite horizon TVC

Hamiltonian

H (k,c,λ ) = lnc− lnc∗+λ [kα − c−δk] (64)

Necessary FOCs

Hc = 1/c−λ = 0 (65)
Hk = λ

[
αkα−1 −δ

]
=−λ̇ (66)
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Infinite horizon TVC

We show: limt→∞ c(t) = c∗ [why?]
Limiting steady state solves

λ̇/λ = αkα−1 −δ = 0

k̇ = kα −1/λ −δk = 0

Solution is the golden rule:

k∗ = (α/δ )1/(1−α) (67)

Verify that this max’s steady state consumption.
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Infinite horizon TVC

Implications for the TVC...
λ (t) = 1/c(t) implies limt→∞ λ (t) = 1/c∗.
Therefore, neither λ (t) nor λ (t)k (t) converge to 0.

The generically correct TVC:

lim
t→∞

H (t) = 0 (68)

The only reason why the standard TVC does not work:

▶ there is no discounting in the example.
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Infinite horizon TVC: Discounting

With discounting, the TVC is easier to check.
Assume:

▶ the objective function is e−ρtv [k (t) ,c(t)]
▶ it only depends on t through the discount factor
▶ v and g are weakly monotone

Then the TVC becomes

lim
t→∞

e−ρt
µ (t)k (t) = 0 (69)

where µ is the costate of the current value Hamiltonian.
This is exactly analogous to the discrete time version

lim
t→∞

β
tu′ (ct)kt = 0 (70)
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6. Example: renewable resource



Setup

max
∫

∞

0
e−ρtu(y(t))dt (71)

subject to (72)
ẋ(t) =−y(t) (73)

x(0) = 1 (74)
x(t) ≥ 0 (75)
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Hamiltonian

Current value Hamiltonian

Necessary FOCs
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Solution

Therefore:

µ (t) = µ (0)eρt (76)

y(t) = u′−1 [µ (0)eρt] (77)

The optimal path has limx(t) = 0 or∫
∞

0
y(t)dt =

∫
∞

0
u′−1 [µ (0)eρt]dt = 1 (78)

This solves for µ (0).
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TVC

TVC for infinite horizon case:

lime−ρt
µ (0)eρtx(t) = 0 (79)

Equivalent to
limx(t) = 0 (80)
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Reading

▶ Acemoglu (2009), ch. 7. Proves the Theorems of Optimal
Control.

▶ Barro and Sala-i Martin (1995), appendix.
▶ Leonard and Van Long (1992): A fairly comprehensive

treatment. Contains many variations on boundary conditions.
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