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Topics

Optimal control is a method for solving dynamic optimization
problems in continuous time.
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Example: Growth Model

A household chooses optimal consumption to

T
max /O e Pule()]di (1)
subject to
(1) = ri(t) — c(t) 2)
c(1) €[0,] (3)
k(0) = ko,given (4)
k(T)=0 (5)
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Generic Optimal control problem
Choose functions of time ¢(7) and k() so as to

max /(;Tv[k(t),c(t),t]dt (6)

Constraints:
1. Law of motion of the state variable & (7):

k(r) = glk(r), c(1),1] (7)
2. Feasible set for control variable ¢(7):
c(t) Y (1) (8)
3. Boundary conditions, such as:
k(0) = ko,given (9)
k(T) > kr (10)
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Generic Optimal control problem

A\

¢ and k can be vectors.
Y () is a compact, nonempty set.
T could be infinite.
» Then the boundary conditions change

Important: the state cannot jump; the control can.

Note that this looks exactly like the kind of problem that could
be solved with Dynamic Programming in discrete time.
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2. A Recipe for Solving Optimal Control
Problems



Step 1: Hamiltonian

H(t) =v(k,c,t)+u(t)g(k,c,t) (11)
——
k(1)
L is essentially a Lagrange multiplier (called a co-state).
Intuition:

» similar to the dynamic program: current utility + continuation
value (but not quite)

» v(k,c,1): current utility

» 11 (7): the marginal value of increasing k for the future

» g(k,c,t): captures how current actions affect future k
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Step 2: First-order conditions

Derive the first order conditions which are necessary for an
optimum:

dH/dc = 0 (12)
dH/dk = —i (13)

Intuition below ...
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Step 3: TVC

Impose the transversality condition:

» for finite horizon:

u(T) =0 (14)
» for infinite horizon:
IILm H(t)=0 (15)

This depends on the terminal condition (see below).
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Step 4: Solution

A solution is the a set of functions [c(7),k(7), 1(7)] which satisfy
» the FOCs

» the law of motion for the state

» the boundary / transversality conditions
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2.1. Intuition dH/dc =0

Maximize Hamiltonian w.r.to control.

Implies
vet+uge=0 (16)

ve (k,c,t) picks up current marginal utility of ¢
(L (1) is marginal value of additional “future” k.
L (1) ge (k,c,t) picks up change in continuation value

(change in k times marginal value of future k)
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Intuition: dH/dk = — 1

Implies
Vk(k7c7t)+.ugk(kvcvl): —,l.l (17)

Think of this as
(0H /0K /1 = — i/ (18)

» [1/u is the growth rate of marginal utility

» [0H/Jk]|/u is like a rate of return (marginal value of k now
versus the future)

» if the rate of return is high, it is optimal to postpone
consumption and let it grow

» then marginal utility declines over time
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2.2. Example: Growth Model

max/ v(k,c,t)dt — max/ e Plu(c(t))dr
0 0

subject to

k(r) = g(kct)=f k(1)) —c(1) — 8k(1)
C(I) € Y(t) = [va (kmax) - akmax]
k(0) given

For this to work, we need to bound k < k.

(19)
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Growth Model: Hamiltonian

H (k,c,p) = e Pu(c(r)) +u (@) [f k(1)) —c(r) — 6k(1)]
v(k,c,t) k

Necessary conditions:

H = ePu(c)—u=0
He = plf () -8] =

(23)
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Interpretation

=l (c) (24)

W is indeed the marginal value of capital
» the same as the marginal value of consumption
Note: w is discounted to date O
> it falls over time, even in steady state
—g(u)=f'(k)—¢ (25)
When the rate of return is high, marginal utility falls over time

> getting paid to postpone consumption
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Substitute out the co-state

FOC imply two expressions for g(u):

g(u)=256—f"(k) (26)
=g (e "' (cr)) (27)

The growth rate of marginal utility (MRS) equals the “interest rate”
(relative price).

Using the growth rate rule:

g(e P (c)) =—p+g(u'(c)) (28)
=—p—0(c)g(c) (29)
where o (¢) = —u”" /u' x ¢ is the elasticity of marginal utility w.r.to ¢
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Substitute out the co-state

Direct derivation:

g(e P (c)) = dinfe ucte)

dt
d /
= E [—pt—Hnu (Ct)]
MN (Ct)C.'t
)
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Euler Equation

fk)=6—-p
o

g(c)= ©

Analogous to the discrete time version:

il _ () 1/t

Ct

(34)

Solution: ¢, k; that solve Euler equation and resource constraint,

plus boundary conditions.
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2.3. Details

First order conditions are necessary, not sufficient.
They are necessary only if we assume that

1. a continuous, interior solution exists;

2. the objective function v and the constraint function g are
continuously differentiable.

Acemoglu (2009), ch. 7, offers some insight into why the FOCs are
necessary.
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Details

If there are multiple states and controls, simply write down one
FOC for each separately:

5H/5C,‘ = 0
oH[dkj = —L

There is a large variety of cases depending on the length of the

horizon (finite or infinite) and the kinds of boundary conditions.

» Each has its transversality condition (see Leonard and
Van Long 1992).
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Equality constraints
Equality constraints of the form

hlc(2),k(r),1] = O (35)
are simply added to the Hamiltonian as in a Lagrangian problem:

H(t) = v(k,c,1) + u(t)g(k,c, ) + A(0)h(k,c,1) (36)

FOCs are unchanged:

dH/de = 0
dH/k = —p

For inequality constraints:

h(c,k,t)>0; Ah=0 (37)
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3. Sufficient Conditions



Sufficient conditions

First-order conditions are sufficient, if the programming problem is
concave.

This can be checked in various ways.
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Sufficient conditions |

The objective function and the constraints are concave functions of
the controls and the states.

» The co-state must be positive.

This condition is easy to check, but very stringent.

In the growth model:

» u(c) is concave in ¢ (and, trivially, k)
» f(k)—6k—c is concave in ¢ and k
> u=u(c)>0
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Sufficient Conditions Il

(Mangasarian) First-order conditions are sufficient, if

the Hamiltonian is concave in controls and states,

where the co-state is evaluated at the optimal level (and held fixed).
This, too is very stringent.

Note: Conditions | = Il (the sum of two concave functions is
concave).
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In the growth model

dH/dc=u'(c)— 1

OH [k = ulf’ (k) — 8]

J’H/dc* =u"(c) <0

9’H/dk* = uf" (k) < 0

0’H/dcdk =0

Therefore: weak joint concavity (because we know that p > 0)
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Sufficient Conditions |11

Arrow and Kurz (1970)
» First-order conditions are sufficient, if the maximized
Hamiltonian is concave in the states.

» If the maximized Hamiltonian is strictly concave in the states,
the optimal path is unique.

Maximized Hamiltonian:

Substitute out the controls, so that the Hamiltonian is only a
function of the states. (Keep the co-states).

This is less stringent and by far the most useful set of sufficient
conditions.
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In the growth model

Optimal consumption obeys ' (c) = or ¢ = u'~' (1)

Maximized Hamiltonian:

A= (™ (1)) + 1 [F (k) = Sk~ ()] (38)

We have dH/dk > 0 and 9°H/dk*> = uf" (k) < 0.
H is strictly concave in k.

Necessary conditions yield a unique optimal path.
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4. Recipe with Discounting



Discounting: Current value Hamiltonian

Problems with discounting:

» Current utility depends on time only through an exponential
discounting term e P!,

The generic discounted problem is

max /0 " P k(), ()]t (39)

subject to the same constraints as above.
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Shortcut
Discounted Hamiltonian (drop the discounting term):

H=v(k,c)+png(k,c)

FOCs:
dH/dc =0
OH ok = u(r)p — (1)
——
added
and the TVC

lim e PTu(T)k(T) =0

T—roo

(40)

31/53



Deriving the Shortcut

Start from the standard recipe:

H(t) = e P'v(k,c)+ pg(k,c)

JH _ -

87 =0 = ¢ ptvc(kt,ct) = _.utgc(kl?ct)
Ct
oH  _ A A
— = pth(kt,Ct) +,utgk(ktact) = _aut
dk;

[l is the discounted marginal value of k.

(44)

(45)

(46)
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Deriving the Shortcut

Let
W= ept‘al
and multiply through by e’
JoH
o1 pto—pl, — ePliie
3c, 0 = eP'e Plve(kcr) P g (keycr)

1 He

ve(t) = =g (2)

This is the standard FOC, but with 1 instead of [i.

W is the current marginal value of k.

(47)

(48)
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Deriving the Shortcut

Vi) + €' flugi (1) = —eP' 1,

Substitute out ﬁt using

. dep’ (i A
o= 5 = pu+ e

we have
vi(2) + pegi(t) = —fu + p s

This is the standard condition with an additional pu term.
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Example: Growth Model

max/oo e Plu(c(r))dr

0

subject to

k(1)

(1) ;

S k(1)) = (1) = 8k (1)
[Of( max) 5kmax]
k(0) given
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Discounted Hamiltonian

H (ke ) = u(c(n)) +u (o) [f (k(1) — (1) — 6k (7)]

Necessary conditions:
H. = u(c)—pn=0
Hy = plf'(k)=8]=pu—p

Euler equation:

or
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5. Transversality Conditions



5.1. Finite horizon: Scrap value problems

The horizon is T.

The objective function assigns a scrap value to the terminal state
variable: e P79 (k(T)):

max /()Te”’v[k(t),c(t),t]dt+epT¢(k(T)) (59)

Hamiltonian and FOCs: unchanged.
The TVC is
u(T) = ¢'(k(T)) (60)

Intuition:

» w1 is the marginal value of the state «.
» Recall that i is the current value of k.
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Scrap value examples

Household with bequest motive
T
U:/ e Plu(c(t))+e P'V(kr)
0

with k=w+rk—c.
TVC:

(61)

(62)
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Scrap value examples

Maximizing the present value of earnings
T

v= [ e wh()[1-1(0)] (63)

subject to /(1) = Ah(1)*1(r)P — Sh(r)

Scrap value is 0.
TVC: u(T)=0.
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5.2. Infinite horizon TVC

The finite horizon TVC with the boundary condition k(T') > kr is
u(T)=0.
» Intuition: capital has no value at the end of time.

But the infinite horizon boundary condition is NOT lim,_,. 1 () = 0.

The next example illustrates why.
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Infinite horizon TVC: Example

max/oo [In (¢ (£)) — In (c*)] dt
0

subject to
k() = k(0)*—c(r)—8k(r)
k(0) = 1
limk(r) > 0

o0

¢ is the max steady state (golden rule) consumption.

No discounting - subtracting ¢* makes utility finite.
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Infinite horizon TVC

Hamiltonian

H (k,c,A)=Inc—Inc"+ A [k* — c — Ok]

Necessary FOCs

(64)
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Infinite horizon TVC

We show: lim;_,e.c () = c* [why?]

Limiting steady state solves

AA = ak*'-6=0
k = k*—1/A—-8k=0

Solution is the golden rule:

K = (ar)8)"/0-%) (67)

Verify that this max's steady state consumption.
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Infinite horizon TVC

Implications for the TVC...
A (1) =1/c(t) implies lim, o A (1) = 1/c*
Therefore, neither A () nor A (¢) k() converge to 0.

The generically correct TVC:

limH (1) =0 (68)

t—oo

The only reason why the standard TVC does not work:

» there is no discounting in the example.
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Infinite horizon TVC: Discounting
With discounting, the TVC is easier to check.
Assume:

» the objective function is e P'v[k(1),c(1)]
» it only depends on ¢ through the discount factor

» v and g are weakly monotone

Then the TVC becomes

lime P'u(t)k(t) =0 (69)

f—roo

where (1 is the costate of the current value Hamiltonian.

This is exactly analogous to the discrete time version

lim B’ (¢, )k: =0 (70)

f—oo
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6. Example: renewable resource



Setup

max / e Pu(y (1)) di
0

subject to

=
—~
~
~—
AV
=)
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Hamiltonian

Current value Hamiltonian

Necessary FOCs

49/53



Solution

Therefore:

p(r) =p(0)e? (76)

y(6)=u"""[1n(0)e?] (77)
The optimal path has limx (1) =0 or

/ Ty () di = / TW 1 (0) P dr = 1 (78)
0 0

This solves for 1 (0).
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TVC

TVC for infinite horizon case:

lime P (0)ePx(t) =0 (79)

Equivalent to
limx (1)

0 (80)
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Reading

» Acemoglu (2009), ch. 7. Proves the Theorems of Optimal
Control.

» Barro and Sala-i Martin (1995), appendix.

» Leonard and Van Long (1992): A fairly comprehensive
treatment. Contains many variations on boundary conditions.
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