
The Growth Model: Discrete Time
Dynamic Programming

Prof. Lutz Hendricks

Econ720

September 17, 2024

1 / 35



The Issue

We solved the growth model in sequence language.

▶ the solution is a sequence of objects that satisfies a bunch of
difference equations

An alternative: recursive formulation.

▶ dynamic programming
▶ the solution is a set of functions

2 / 35



Dynamic Programming: An Informal Introduction

The basic idea of DP is to transform a many period optimization
problem into a static problem.
To do so, we summarize the entire future by a value function.
The value function

▶ tells us the maximum utility obtainable from tomorrow
onwards for any value of the state variables.

▶ an indirect utility function

3 / 35



2. Simplest example

A household lives for two periods.

maxu(c)+βv
(
c′1,c

′
2
)

(1)

subject to

s′ = e+Rs− c (2)
c′1 +pc′2 = Rs′ (3)

Notational convention: prime means tomorrow.

4 / 35



Lagrangian

L = u
(
e+Rs− s′

)
+βv

(
Rs′−pc′2,c

′
2
)

(4)

FOC:

u′ (c) = βv1
(
.′
)

R (5)
v1
(
.′
)

p = v2
(
.′
)

(6)

Solution: c,c′1,c
′
2,s

′ that solve

▶ 2 FOCs
▶ 2 budget constraints

5 / 35



Dynamic Programming

The idea:

▶ solve one period at a time
▶ summarize the entire future with a “value function”

(an indirect utility function)

If I know the value of saving, I can solve the first period problem.

6 / 35



2.1. Tomorrow’s Problem
We solve this backwards, starting from the last period (“backwards
induction”).

The last period problem is a simple static one:

maxv(Rs−pc2,c2) (7)

▶ All we need to know about the past is saving s
(assets at the start of this period)

FOC:

▶ The same as the static condition from the Lagrangian

v1 (c1,c2)p = v2 (c1,c2) (8)

7 / 35



Decision Rules

The FOC implicitly defines two decision rules of the form cj (s)

Indirect utility is then also just a function of s:

W (s) = v(c1 (s) ,c2 (s)) (9)
=max

c2
v(Rs−pc2,c2) (10)

We call s the state variable and W the value function.

8 / 35



Log utility
Assume log utility tomorrow:

v(c1,c2) = α lnc1 +(1−α) ln(c2) (11)

Then the static condition becomes

pα/c1 = (1−α)/c2 (12)

or
pc2 =

1−α

α
c1 (13)

With log utility, expenditure shares are constant (α for c1 and
1−α for c2).
Consumption levels:

c1 = αRs (14)
c2 = (1−α)Rs/p (15)

9 / 35



Value function

Then we can compute tomorrow’s value function:

W (s) = α ln(αRs)+(1−α) ln((1−α)Rs/p) (16)

with marginal utility of wealth

W ′ (s) = α/s+(1−α)/s = 1/s (17)

Solution:

▶ value function W (s) and policy functions cj = fj (s)
▶ policy functions maximize W (s) point by point
▶ W is the max of the RHS

10 / 35



2.2. Today’s problem

We can now write today’s problem as

V (s) = max
s′

u
(
s′− e

)
+β

[
α ln

(
αRs′

)
+(1−α) ln

(
(1−α)Rs′/p

)]︸ ︷︷ ︸
W(s′)

(18)
with FOC

u′ (c) = βW ′ (s′
)
= β/s′ (19)

Solution:

▶ value function V (s) and policy function s′ = g(s)
▶ g maximizes Bellman equation given W
▶ V is the max of the RHS

11 / 35



Cross check

Check against the Euler equation:

u′ (c) = βv1
(
.′
)

R (20)

= βR
α

αRs′
= β/s′ (21)

Both solutions given (of course) the same result.

12 / 35



2.3. Backward Induction I

Now consider a more general finite horizon problem

max
T

∑
t=1

u(ct) (22)

subject to kt+1 = Rkt − ct and kT+1 ≥ 0.

We again solve it backwards, starting from the last period.

13 / 35



Last Period

Consider the last date t = T.
The household cannot save: kT+1 = 0

Continuation value: V(k,T +1) = 0

▶ The problem is static: just eat all income

Terminal value:
V (k,T) = u(Rk) (23)

14 / 35



Backward Induction

Now step back to t = T −1

V (k,T −1) = maxu
(
Rk− k′

)
+βu

(
Rk′

)︸ ︷︷ ︸
V(k′,T)

(24)

We can (in principle) solve for V (k,T −1)

Now step back to t = T −2, etc.

Bellman equation for any period:

V (k, t) = maxu
(
Rk− k′

)
+βV

(
k′, t+1

)
(25)

15 / 35



Backward Induction

This is mainly useful for numerically solving the problem.
Sometimes, one can solve finite horizon problems analytically
(see Huggett et al. (2006) for an example).

16 / 35



Infinite Horizon

Conceptually, we do exactly the same thing.
But now we don’t have a last period that would solve for W (s′) on
the RHS of the Bellman equation.
Instead, we impose that tomorrow’s value function is the same as
today’s:

V (s) = W (s) (26)

This works because the problem is stationary

▶ every period is the same, except for the value of the state
variable s

17 / 35



3. The Growth Model: Planner’s Problem



Infinite Horizon Problem

Suppose we solve the planner’s problem with starting date t∗:

V = max
{ct,kt}

∞

∑
t=t∗

β
t−t∗u(ct) (27)

subject to kt+1 = f (kt)− ct ∀t.
Call the optimal solution c∗t ,k

∗
t and the implied lifetime utility V.

19 / 35



Value function

Claim: The only fact that we need to know to figure out V is kt∗

▶ other past choices do not show up in preferences or constraints
▶ kt∗ is the state variable of the problem.

Therefore, we can define the value function (indirect utility
function)

V (kt∗) =
∞

∑
t=t∗

β
t−t∗u(ct∗) (28)

=max
∞

∑
t=t∗

β
t−t∗u(f (kt)− kt+1) (29)

20 / 35



Stationarity

Claim: V(kt∗) does not depend on t∗.

▶ Compare the value functions obtained from the problems
starting at t∗ and at t∗+1.

▶ They are the same functions.
▶ That is, solving the problem yields the same value function

regardless of the starting date.

Such a problem is called stationary.

▶ Not all optimization problems have this property.
▶ For example, if the world ends at some finite date, then the

problem at t ∗+1 looks different from the problem at t∗.

21 / 35



Time consistency

▶ What if we start the problem at t∗+1?
▶ Would the planner want to change his optimal choices of

kt∗+2,kt∗+3, and so on?
▶ The answer is obviously “no,” ... although I won’t prove this

just yet.
▶ A problem with this property is known as time consistent:

▶ Give the decision maker a choice to change his mind at a later
date and he will choose the same actions again.

▶ Not all optimization problems have this property.
▶ For example, changing the specification of discounting easily

destroys time consistency (self-control problems arise).

22 / 35



Recursive structure

Now comes the key insight:

V (kt∗) = u(c∗t )+β

[
∞

∑
t=t∗+1

β
t−(t∗+1)u(ct∗)

]
(30)

= u(c∗t )+βV (kt∗+1) (31)
=max

kt∗+1
u(f (kt∗)− kt∗+1)+βV (kt∗+1) (32)

We have

▶ one term reflecting current period utility
▶ a second term summarizing everything that happens in the

future, given optimal behavior, as a function of kt∗+1.

23 / 35



Recursive structure

Since this equation holds for any arbitrary start date, we may drop
date subscripts.
Unfortunate convention in macro:

▶ no subscript = today
▶ prime = tomorrow: k′ = kt+1

This yields a Bellman equation:

V (k) = max
k′

u
(
f (k)− k′

)
+βV

(
k′
)

Claim: Solving the DP is equivalent to solving the original
problem (the Lagrangian).

▶ We will see conditions when this is true later.

24 / 35



Recursive structure

The convenient part of this is: we have transformed a multiperiod
optimization problem into a two period (almost static) one.
If we knew the value function, solving this problem would be trivial.

The bad news is that we have transformed an algebraic equation
into a functional equation.
The solution of the problem is a value function V and an optimal
policy function

c = φ (k)

Note that c cannot depend on anything other than k, in particular
not on k’s at other dates, because these don’t appear in the
Bellman equation.

25 / 35



Solution

A solution to the planner’s problem is now a pair of functions

▶ value function V (k)
▶ policy function φ (k)

These solve the Bellman equation in the following sense.

1. Given V(k), setting c = φ (k) solves the max part of the
Bellman equation.

2. Given that c = φ (k), the value function solves

V(k) = u(φ(k))+βV (f (k)−φ(k))

26 / 35



Solution: Intuition

Given V(k), setting c = φ (k) solves the max part of the Bellman
equation.

This means:
Point by point, for each k:

φ (k) = argmax
c

u(c)+βV (f (k)− c) (33)

φ (k) simply collects all the optimal c’s – one for each k.

27 / 35



Solution: Intuition

V(k) = u(φ(k))+βV (f (k)−φ(k))

Note that this uses the optimal policy function for c.

Think of the Bellman equation as a mapping in a function space:

Vn+1 = T(Vn) = maxu(c)+βVn (f (k)− c)

Given an input argument Vn the mapping produces an output
arguments Vn+1.
The solution to the Bellman equation is the V that satisfies
V = T(V).

▶ a fixed point.

28 / 35



4. When Can DP Be Used?

The short answer:
If the problem can be written in a certain format (next slide)
and if mild conditions are met,
then
solving the Dynamic Problem is equivalent to solving the sequence
problem.

Details are in the slides about Dynamic Programming
(which we won’t go through in class)

29 / 35



Generic Sequence Problem

V∗ (x(0)) = max
{x(t+1)}∞

t=0

∞

∑
t=0

β
tU (x(t) ,x(t+1))

subject to

x(t+1) ∈ G(x(t))

x(0) given

x(t) ∈ X ⊂ Rk is the set of allowed states.
The correspondence G : X ⇒ X defines the constraints.

A solution is a sequence {x(t)}

30 / 35



Mapping into the growth model

V∗ (k (0)) = max
{k(t+1)}∞

t=0

∞

∑
t=0

β
tU (f (k (t))− k(t+1))

subject to
k (t+1) ∈ G(k (t)) = [0, f (k(t))]

k (t) ∈ X = R+

k (0) given

31 / 35



Recursive Problem

V (x) = max
y∈G(x)

U (x,y)+βV (y) , ∀x ∈ X

A solution is a policy function π : X −→ X and a value function
V (x) such that

1. V (x) = U (x,π (x))+βV (π (x)) , ∀x ∈ X

2. When y = π (x), now and forever, the max value is attained.

32 / 35



The Main Point

This is the upshot:
If it is possible to write the optimization problem in the

format of the generic sequence problem
and if mild conditions hold,
then solving the sequence problem is equivalent to

solving the dynamic program.

33 / 35



Reading

▶ Acemoglu (2009), ch. 6. Also ch. 5 for background material
we will discuss in detail later on.

▶ Ljungqvist and Sargent (2004), ch. 3 (Dynamic
Programming), ch. 7 (Recursive CE).

▶ Stokey et al. (1989), ch. 1 is a nice introduction.

34 / 35



References I

Acemoglu, D. (2009): Introduction to modern economic growth,
MIT Press.

Huggett, M., G. Ventura, and A. Yaron (2006): “Human Capital
and Earnings Distribution Dynamics,” Journal of Monetary
Economics, 53, 265–290.

Ljungqvist, L. and T. J. Sargent (2004): Recursive macroeconomic
theory, 2nd ed.

Stokey, N., R. Lucas, and E. C. Prescott (1989): “Recursive
Methods in Economic Dynamics,” .

35 / 35


	Introduction
	Simplest example
	tomorrow's problem
	Today's problem
	Backward induction

	Infinite Horizon Problem
	When Can DP Be Used?
	Reading
	References

