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Dynamic Programming Theorems

Useful theorems to characterize the solution to a DP problem.

There is no reason to remember these results.
But you need to know they exist and can be looked up when you
need them.
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Generic Sequence Problem (P1)

V∗ (x(0)) = max
{x(t+1)}∞

t=0

∞

∑
t=0

β
tU (x(t) ,x(t + 1))

subject to

x(t + 1) ∈ G(x(t))

x(0) given

x(t) ∈ X ⊂ Rk is the set of allowed states.
The correspondence G : X⇒ X defines the constraints.

A solution is a sequence {x(t)}
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Mapping into the growth model

max
{k(t+1)}∞

t=0

∞

∑
t=0

β
tU (f (k (t))− k(t + 1))

subject to
k (t + 1) ∈ G(k (t)) = [0, f (k(t))]

k (t) ∈ X = R+

k (0) given
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Recursive Problem (P2)

V (x) = max
y∈G(x)

U (x,y) + βV (y) , ∀x ∈ X

A solution is a policy function π : X −→ X and a value function
V (x) such that

1. V (x) = U (x,π (x)) + βV (π (x)) , ∀x ∈ X

2. When y = π (x), now and forever, the max value is attained.
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The Main Point

This is the upshot of everything that follows:

If it is possible to write the optimization problem in
the format of P1

and if mild conditions hold,
then solving P1 and P2 are equivalent.
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Assumptions That Could Be Relaxed

1. Stationarity: U and G do not depend on t.
2. Utility is additively separable.

I Time consistency

3. The control is x(t + 1).
I There could be additional controls that don’t affect x(t + 1).
I They are "max’d out". Ex: 2 consumption goods.
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Dynamic Programming Theorems

I The payoff of DP: it is easier to prove that solutions exist, are
unique, monotone, etc.

I We state some assumptions and theorems using them.
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Assumption 1: Non-emptiness

I Define the set of feasible paths starting at x(0) by Φ(x(0)).
I G(x) is nonempty for all x ∈ X.

I needed to prevent a currently good looking path from running
into "dead ends"

I limn→∞ ∑
n
t=0 β tU (x(t) ,x(t + 1)) exists and is finite, for all

x(0) ∈ X and feasible paths x ∈ Φ(x(0)).
I cannot have unbounded utility
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Assumption 2: Compactness

I The set X in which x lives is compact.
I G is compact valued and continuous.
I U is continuous.

Notes:

I Compactness avoids existence issues: without it, there could
always be a slightly better x

I Compact X creates trouble with endogenous growth, but can
be relaxed.

I Think of A1 and A2 together as the “existence conditions.”
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Digression

A correspondence is continuous if it has a closed graph and is lower
hemicontinuous.

Closed graph: {xn}→ x and {yn}→ y =⇒ y ∈ G(x) where

I G : X⇒ Y, xn ∈ X, yn ∈ Y.

Lower hemicontinuity:
For every {xn}→ x ∈ X there is a yn that satisfies

1. yn ∈ G(xn)

2. {yn}→ y ∈ G(x)
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Assumption 3: Convexity

I U is strictly concave.
I G is convex (for all x, G(x) is a convex set).

Typical assumptions to ensure that first order conditions are
sufficient.
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Assumption 4: Monotonicity

I U (x,y) is strictly increasing in x.
I more capital is better

I G is monotone in the sense that x≤ x′ implies G(x)⊂ G(x′).

This is needed for monotonicity of policy function.
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Assumption 5: Differentiability

I U is continuously differentiable on the interior of its domain.

So we can work with first-order conditions.
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Main Result

Principle of Optimality + Equivalence of values:
A1 and A2 =⇒ solving P1 and solving P2 yield the same value
and policy functions.

You can read about the details...
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Theorem 3: Uniqueness of V

I Assumptions: A1 and A2.
I Then there exists a unique, continuous, bounded value

function that solves P1 or P2 (they are the same).
I An optimal plan x∗ exists. But it may not be unique.
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Theorem 4: Concavity of V

I Assumptions: A1-A3 (convexity).
I Then the value function is strictly concave.

Recall: A3 says that U is strictly concave and G(x) is convex.
So we are solving a concave / convex programming problem.
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Corollary 1

I Assumptions A1-A3.
I Then there exists a unique optimal plan x∗ for all x(0).
I It can be written as x∗ (t + 1) = π (x∗ (t)).
I π is continuous.

Reason: The Bellman equation is a concave optimization problem
with convex choice set.
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Theorem 5: Monotonicity of V

I Assumptions: A1, A2, A4.
I Recall A4: U and G are monotone.
I V is strictly increasing in all arguments (states).
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Theorem 6: Differentiability of V

I Assumptions A1, A2, A3, A5.
I A5: U is differentiable.
I Then V (x) is continuously differentiable at all interior points x′

with π (x′) ∈ IntG(x′).
I The derivative is given by:

DV
(
x′
)

= DxU
(
x′,π

(
x′
))

(1)

This is an envelope condition: we can ignore the response of π

when x′ changes.
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Contraction mapping theorem
I How could one show that V is increasing? Or concave? Etc.
I Thinking of the Bellman equation as a functional equation

helps...
I Think of the Bellman equation as mapping V on the RHS into

V̂ on the LHS:

V̂ (x) = max
y∈G(x)

U (x,y) + βV (y) (2)

I The RHS is a function of V.
I The Bellman equation maps the space of functions V lives in

into itself.
V̂ = T(V) (3)

I The solution is the function V that is a fixed point of T:

V = T (V) (4)
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Notation

I If T : X→ X, we write:

1. Tx instead of the usual T (x)
2. T

(
X̂
)
as the image of the set X̂ ⊂ X.
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Contraction mapping theorem

I The Bellman equation is V̂ = TV.
I Suppose we could show:

1. If V is increasing, then V̂ is increasing.
2. There is a fixed point in the set of increasing functions.
3. The fixed point is unique.

I Then we would have shown that the solution V is increasing.
I The contraction mapping theorem allows us to make

arguments like this.
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Contraction mapping theorem

Definition

Let (S,d) be a metric space and T : S→ S. T is a contraction
mapping with modulus β , if for some β ∈ (0,1),

d (Tz1,Tz2)≤ βd (z1,z2) , ∀z1,z2 ∈ S (5)

A contraction pulls points closer together.
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Contraction mapping theorem

Theorem 7: Let (S,d) be a complete metric space and
let T be a contraction mapping. Then T has a unique
fixed point in S.

Recall:

1. Cauchy sequence: For any ε , ∃n such that d(xn,xm) < ε for
m > n.

2. Complete metric space: Every Cauchy sequence converges to a
point in S.
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Contraction mapping theorem
A helpful result for showing properties of V :

Theorem 8: Let (S,d) be a complete metric space and
let T : S→ S be a contraction mapping with fixed point
Tẑ = ẑ.

If S′ is a closed subset of S and T (S′)⊂ S′, then ẑ ∈ S′.
If T(S′)⊂ S′′ ⊂ S′, then ẑ ∈ S′′.

The point: When looking for the fixed point, one can restrict the
search to sub-spaces with nice properties.
Example:

I We try to show that V is strictly concave, but the set of
strictly concave functions (S) is not closed.

I If we can show that T maps strictly concave functions into a
closed subset S′ of S, then V must be strictly concave.
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Blackwell’s Sufficient Conditions

This is helpful for showing that a Bellman operator is a contraction:

Theorem 9: Let X ⊆ RK , and B(X) be the space of
bounded functions f : X→ R. Suppose that
T : B(X)→ B(X) satisfies:

(1) monotonicity: f (x)≤ g(x) for all x ∈ X implies
Tf (x)≤ Tg(x) for all x ∈ X.

(2) discounting: there exists β ∈ (0,1) such that

T[f (x) + c]≤ Tf (x) + βc for all f ∈ B(X) and c≥ 0.

Then T is a contraction with modulus β .
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Example: Growth Model

TV = max
k′∈[0,f (k)]

U
(
f (k)− k′

)
+ βV(k′) (6)

Metric space:

I S: set of bounded functions on (0,∞).
I d: sup norm: d(f ,g) = sup |f (k)−g(k)|.

Step 1: T : S→ S

I need tricks if U is not bounded (argue that k is bounded along
any feasible path)

I otherwise TV is the sum of bounded functions

28 / 40



Example: Growth Model

Step 2: Monotonicity

I Assume W(k)≥ V(k)∀k.
I Let g(k) be the optimal policy for V(k).
I Then

TV(k) = U (f (k)−g(k)) + βV(g(k)) (7)
≤ U(f (k)−g(k)) + βW(g(k)) (8)
≤ TW(k) (9)
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Example: Growth Model

Step 3: Discounting

T(V + a(k)) = maxU
(
f (k)− k′

)
+ β [V(k′) + a] (10)

= V(k) + βa (11)

Therefore: T is a contraction mapping with modulus β .
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Summary: Contraction mapping theorem

Suppose you want to show that the value function is increasing.

1. Show that the Bellman equation is a contraction mapping -
using Blackwell.

2. Show that it maps increasing functions into increasing
functions.

Done.
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First order conditions

Consider again Problem P2:

V (x) = max
y∈G(x)

U (x,y) + βV (y) , ∀x ∈ X

If we make assumptions that ensure:

I V is differentiable and concave.
I U is concave.
I G is convex. [A1-A5 ensure all that.]

Then the RHS is just a standard concave optimization problem.
We can take the usual FOCs to characterize the solution.
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First order conditions
I For y:

DyU (x,π (x)) + βDV (π (x)) = 0 (12)

I To find DV (x) differentiate the Bellman equation:

DV (x) = DxU (x,π (x))+DyU (x,π (x)) Dπ (x)+βDV (π (x))Dπ (x) = 0
(13)

I Apply the FOC to find the Envelope condition:

DV (x) = DxU (x,π (x)) (14)
DV (π (x)) = Dx U (π (x) ,π (π (x))) (15)

I Sub back into the FOC:

DyU (x,π (x)) + βDxU (π (x) ,π (π (x))) = 0 (16)
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First order conditions

I In the usual prime notation:

D2U
(
x,x′

)
+ βD1U

(
x′,x′′

)
= 0 (17)

I Think about a feasible perturbation:

1. Raise x′ a little and gain D2U (x,x′) today.
2. Tomorrow lose the marginal value of the state x′: D1 (x′,x′′).

I Why isn’t there a term as in the growth model’s resource
constraint: f ′ (k) + 1−δ?
I By writing U (x,x′), the resource constraint is built into U.
I In the growth model: U (k,k′) = u(f (k) + (1−δ )k− k′).
I D1U = u′ (c) [f ′ (k) + 1−δ ].
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Transversality

I Even though the programming problem is concave, the
first-order condition is not sufficient!

I A mechanical reason: it is a first-order difference equation - it
has infinitely many solutions.

I A boundary condition is needed.

Theorem 10: Let X ⊂ RK and assume A1-A5. Then a
sequence {x(t + 1)} with x(t + 1) ∈ IntG(x(t)) is optimal
in P1, if it satisfies the Euler equation and the
transversality condition

lim
t→∞

β
tDxU (x(t) ,x(t + 1)) x(t) = 0 (18)
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Example: The growth model

max
∞

∑
t=0

β
t ln(c(t))

subject to

0 ≤ k (t + 1)≤ k (t)α − c(t)

k (0) = k0
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Example: The growth model

I Step 1: Show that A1 to A5 hold.
I Define U (k,k′) = ln(kα − k′).
I A1 is obvious: G(x) is non-empty. The sum of discounted

utilities is bounded for all feasible paths.
I A2:

I X is compact - no, but we can restrict k to a compact set
w.l.o.g.

I G is compact valued and continuous: check
I U is continuous: check

I A3: U is strictly concave. G(x) is convex: check.
I A4: U is strictly increasing in x. G is monotone: check.
I A5: U is continuously differentiable: check

37 / 40



Example: The growth model
I Step 2: Theorems 1-6 and 10 apply.
I We can characterize the solution by first-order conditions and

TVC.
I FOC:

1
kα −π (k)

= βV ′ (π (k)) (19)

I Envelope:

V ′ (k) =
αkα−1

kα −π (k)
(20)

I Combine:
1

kα −π (k)
= β

απ (k)α−1

π (k)α −π (π (k))
(21)

I Or:
u′ (c) = β f ′

(
k′
)

u′
(
c′
)

(22)
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Example: The growth model

Other things we know:

1. V is continuously differentiable, bounded, unique, strictly
concave.

2. V ′ (k) > 0.
3. The optimal policy function c = φ (k) is unique, continuous.
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Reading

I Acemoglu, Introduction to Modern Economic Growth, ch. 6
I Stokey, Lucas, with Prescott, Recursive Methods. A book

length treatment. The standard reference.
I Krusell, “Real Macroeconomic Theory,” ch. 4.

40 / 40


	Introduction
	Theorems
	Contraction mapping thm
	Euler conditions
	Example

