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Dynamic Programming Theorems

Useful theorems to characterize the solution to a DP problem.

There is no reason to remember these results.

But you need to know they exist and can be looked up when you
need them.
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Generic Sequence Problem (P1)

Vi(x(0)) = {x(g?ﬁzogﬁ’U(X(I)w(ﬂr1))

subject to
x(t+1) € Gx(1)
x(0) given

x(t) € X C R¥ is the set of allowed states.

The correspondence G : X = X defines the constraints.

A solution is a sequence {x (1)}
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Mapping into the growth model

max iBtU(f(k(t)) —k(t+1))

{k(t+1)}20 =0
subject to
k(t+1) € G(k(1)) = [0,/ (k(2))]
k(f)e X=R"
k(0) given
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Recursive Problem (P2)

V(x)= max U(x,y)+BV(y), VxeX
yEG(x)

A solution is a policy function 7 : X — X and a value function
V (x) such that

LVx)=Uxnrx)+BV(r(x), VxeX

2. When y = 7 (x), now and forever, the max value is attained.
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The Main Point

This is the upshot of everything that follows:

If it is possible to write the optimization problem in
the format of P1

and if mild conditions hold,

then solving P1 and P2 are equivalent.
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Assumptions That Could Be Relaxed

1. Stationarity: U and G do not depend on 1.
2. Utility is additively separable.

» Time consistency
3. The control is x(r+1).

» There could be additional controls that don't affect x(z+1).
» They are "max'd out". Ex: 2 consumption goods.

7/40



Dynamic Programming Theorems

» The payoff of DP: it is easier to prove that solutions exist, are
unique, monotone, etc.

» We state some assumptions and theorems using them.
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Assumption 1: Non-emptiness

» Define the set of feasible paths starting at x(0) by ® (x(0)).
» G(x) is nonempty for all x € X.

» needed to prevent a currently good looking path from running
into "dead ends"

> lim, e Y o BU (x(1),x(r+ 1)) exists and is finite, for all
x(0) € X and feasible paths x € ® (x(0)).

» cannot have unbounded utility
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Assumption 2: Compactness

» The set X in which x lives is compact.
» G is compact valued and continuous.

» U is continuous.

Notes:
» Compactness avoids existence issues: without it, there could
always be a slightly better x

» Compact X creates trouble with endogenous growth, but can
be relaxed.

» Think of Al and A2 together as the “existence conditions.”

10/40



Digression

A correspondence is continuous if it has a closed graph and is lower
hemicontinuous.

Closed graph: {x,} —x and {y,} -y = y € G(x) where
» G:X=3Y, x,eX, €Y.

Lower hemicontinuity:

For every {x,} — x € X there is a y, that satisfies
1. yp € G(xp)
2. {m} —>yeG(x)
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Assumption 3: Convexity

» U is strictly concave.

» G is convex (for all x, G(x) is a convex set).

Typical assumptions to ensure that first order conditions are
sufficient.
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Assumption 4: Monotonicity

» U(x,y) is strictly increasing in x.
» more capital is better

» G is monotone in the sense that x <x’ implies G (x) C G ().

This is needed for monotonicity of policy function.
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Assumption 5: Differentiability

» U is continuously differentiable on the interior of its domain.

So we can work with first-order conditions.
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Main Result

Principle of Optimality + Equivalence of values:
Al and A2 — solving P1 and solving P2 yield the same value
and policy functions.

You can read about the details...
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Theorem 3: Uniqueness of V

» Assumptions: Al and A2.

» Then there exists a unique, continuous, bounded value
function that solves P1 or P2 (they are the same).

» An optimal plan x* exists. But it may not be unique.
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Theorem 4: Concavity of V

» Assumptions: A1-A3 (convexity).

» Then the value function is strictly concave.

Recall: A3 says that U is strictly concave and G (x) is convex.

So we are solving a concave / convex programming problem.
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Corollary 1

> Assumptions Al-A3.
» Then there exists a unique optimal plan x* for all x(0).
> It can be written as x* (r+ 1) = 7w (x* (1)).

» 7T is continuous.

Reason: The Bellman equation is a concave optimization problem
with convex choice set.
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Theorem 5: Monotonicity of V

» Assumptions: Al, A2, A4,
» Recall A4: U and G are monotone.

» V is strictly increasing in all arguments (states).
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Theorem 6: Differentiability of V

v

Assumptions Al, A2, A3, Ab.

A5: U is differentiable.

Then V (x) is continuously differentiable at all interior points x’
with 7 (x') € IntG (¥').

The derivative is given by:

v

v

v

DV (X') =DU (v, 7 (x')) (1)

This is an envelope condition: we can ignore the response of ©
when x’ changes.
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Contraction mapping theorem

» How could one show that V is increasing? Or concave? Etc.

» Thinking of the Bellman equation as a functional equation
helps...

» Think of the Bellman equation as mapping V on the RHS into
V on the LHS:

V@):ngfﬂxy}+ﬁvw) (2)

» The RHS is a function of V.
» The Bellman equation maps the space of functions V lives in
into itself.

A

V=T1(v) (3)

» The solution is the function V that is a fixed point of T
V=T(V) (4)
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Notation

> If T:X — X, we write:

1. Tx instead of the usual T (x)
2. T (X) as the image of the set X C X.
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Contraction mapping theorem

v

The Bellman equation is V = TV.
» Suppose we could show:

1. If V is increasing, then V is increasing.
2. There is a fixed point in the set of increasing functions.
3. The fixed point is unique.

v

Then we would have shown that the solution V is increasing.

v

The contraction mapping theorem allows us to make
arguments like this.
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Contraction mapping theorem

Definition

Let (S,d) be a metric space and 7: S — S. T is a contraction
mapping with modulus B, if for some f € (0, 1),

d(Tz1,Tz) < Bd(z1,22), V21,220 € S (5)

A contraction pulls points closer together.
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Contraction mapping theorem

Theorem 7: Let (S,d) be a complete metric space and
let T be a contraction mapping. Then T has a unique
fixed point in S.

Recall:

1. Cauchy sequence: For any &, Jn such that d(x,,x,) < € for
m>n.

2. Complete metric space: Every Cauchy sequence converges to a
point in S.
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Contraction mapping theorem
A helpful result for showing properties of V :

Theorem 8: Let (S,d) be a complete metric space and
let T:S— S be a contraction mapping with fixed point
Tz =2

If S" is a closed subset of S and T (S') C ', thenz e §'.

IfT(s)cs"cS, thenzeS".

The point: When looking for the fixed point, one can restrict the
search to sub-spaces with nice properties.

Example:
» We try to show that V is strictly concave, but the set of
strictly concave functions () is not closed.

» If we can show that 7" maps strictly concave functions into a
closed subset S’ of S, then V must be strictly concave.
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Blackwell's Sufficient Conditions

This is helpful for showing that a Bellman operator is a contraction:

Theorem 9: Let X C RX, and B(X) be the space of
bounded functions f : X — R. Suppose that
T:B(X)— B(X) satisfies:

(1) monotonicity: f (x) < g(x) for all x € X implies
Tf (x) < Tg(x) for all x € X.

(2) discounting: there exists B € (0,1) such that

T[f (x)+¢] < Tf (x) + Bc for all f € B(X) and ¢ > 0.

Then T is a contraction with modulus 3.

27 /40



Example: Growth Model

TV = U —K)+BV(K 6
plnax U (f(k) =) + BV(K) (6)
Metric space:
» S: set of bounded functions on (0,0).
» d: sup norm: d(f,g) = sup|f(k) — g(k)|.
Stepl: T:§5—S

» need tricks if U is not bounded (argue that k is bounded along
any feasible path)

» otherwise TV is the sum of bounded functions
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Example: Growth Model

Step 2: Monotonicity
» Assume W(k) > V(k)Vk.
> Let g(k) be the optimal policy for V(k).
» Then

TV(k) = U(f(k) — g(k)) + BV (g(k))
< U(f(k) — g(k)) + BW(g(k))
< TW(k)
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Example: Growth Model

Step 3: Discounting

T(V+a(k)) =max U (f(k) — k') + B[V(K') +d]
=V(k)+ Ba

Therefore: T is a contraction mapping with modulus 3.
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Summary: Contraction mapping theorem

Suppose you want to show that the value function is increasing.

1. Show that the Bellman equation is a contraction mapping -
using Blackwell.

2. Show that it maps increasing functions into increasing
functions.

Done.
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First order conditions

Consider again Problem P2:

V(x)= max U(x,y)+BV(y), xeX
yEG(x)
If we make assumptions that ensure:

» V is differentiable and concave.
» U is concave.
» G is convex. [A1-A5 ensure all that.]

Then the RHS is just a standard concave optimization problem.

We can take the usual FOCs to characterize the solution.
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First order conditions

> For y:
DU (x,m(x))+BDV (7 (x))=0 (12)

» To find DV (x) differentiate the Bellman equation:
DV (x)=D,U(x,7(x))+DyU (x,7m(x)) Dr(x)+BDV (7 (x))Dr (x) =

(13)

» Apply the FOC to find the Envelope condition:
DV(x) = D,U(x,m(x)) (14)
DV(z(x)) = Dy U(w(x),m(x(x))) (15)

» Sub back into the FOC:
DyU (x,m(x)) + BD,U (7 (x) , w (7 (x))) =0 (16)
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First order conditions

» In the usual prime notation:

DU (x,x') +BD1U (¥, x") =0 (17)

» Think about a feasible perturbation:

1. Raise X’ a little and gain DU (x,x’) today.
2. Tomorrow lose the marginal value of the state x': Dy (x',x").

» Why isn’t there a term as in the growth model’s resource
constraint: f’ (k) +1— 67
» By writing U (x,x’), the resource constraint is built into U.
» In the growth model: U (k,k') = u(f (k)+ (1 —0)k—K).
» DiU=1d(c)[f (k)+1—3].
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Transversality

» Even though the programming problem is concave, the
first-order condition is not sufficient!

» A mechanical reason: it is a first-order difference equation - it
has infinitely many solutions.

» A boundary condition is needed.

Theorem 10: Let X C RX and assume A1-A5. Then a
sequence {x(t+ 1)} with x(t1+ 1) € IntG (x(t)) is optimal
in P1, if it satisfies the Euler equation and the
transversality condition

lim B'D.U (x(1) x(+1) x() =0 (18)
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Example: The growth

model

maxg B'In(c (1))
subject to

k(t4+1) <k()*—c(r)
ko

A
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Example: The growth model

» Step 1: Show that Al to A5 hold.

» Define U (k,k') = In(k* —K&').

» Al is obvious: G(x) is non-empty. The sum of discounted
utilities is bounded for all feasible paths.

> A2:

» X is compact - no, but we can restrict k to a compact set
w.l.o.g.

» G is compact valued and continuous: check

» U is continuous: check

» A3: U is strictly concave. G(x) is convex: check.
» A4: U is strictly increasing in x. G is monotone: check.

» A5: U is continuously differentiable: check
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Example: The growth model

» Step 2: Theorems 1-6 and 10 apply.
» We can characterize the solution by first-order conditions and

TVC.
> FOC: |
@0 =BV'(r (k) (19)
> Envelope:
V=t 20)
> Combine: .
ko —17r WP 7r(k()x°7‘r Ek)r(n(k)) (21)
> Or:
' (c) = Bf' (K) u' (¢') (22)
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Example: The growth model

Other things we know:

1. Vis continuously differentiable, bounded, unique, strictly
concave.

2. V'(k) > 0.

3. The optimal policy function ¢ = ¢ (k) is unique, continuous.
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Reading

» Acemoglu, Introduction to Modern Economic Growth, ch. 6

» Stokey, Lucas, with Prescott, Recursive Methods. A book
length treatment. The standard reference.

» Krusell, “Real Macroeconomic Theory,” ch. 4.
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