Midterm Exam. Econ720. Fall 2014

Professor Lutz Hendricks. UNC.

- Answer all questions.
- Write legibly! Write legibly! Write legibly!
- Write on only one side of each sheet.
- The total time is 1:15 hours.
- A good answer should explain what you are doing. For example: "To find the consumption function, I take first order conditions, then use the budget constraint to solve for c." Then comes the math...

1 OLG with Money and Trees

Demographics: N young are born in t. Each lives for 2 periods.

Endowments: Each person receives endowments of e_1 when young and e_2 when old (in units of the good). Assume that $e_1 > e_2$. The initial old hold M units of flat money (pieces of paper) and 1 tree (total, no per person).

Preferences: $u(c_t^y) + u(c_{t+1}^o)$ with $u(c) = c^{1-\sigma}/(1-\sigma)$ and $0 < \sigma \leq 1$. Note that households do not discount old consumption.

Technology: The tree yields d units of the good in each period. Goods can only be eaten, not stored.

Markets: Money is the numeraire. Goods are traded at price p_t . Trees are traded at price $q_t p_t$.

Questions:

- 1. State the household problem.
- 2. Derive the saving function

$$s(R) = \frac{e_1 - e_2 R^{-1/\sigma}}{1 + R^{1-1/\sigma}} \tag{1}$$

where R is the return on money and trees. Note that the saving function is increasing in R when $\sigma < 1$.

- 3. Define an equilibirum with valued fiat money.
- 4. Derive an equation for the offer curve. Recall that this is a difference equation linking m_{t+1} to m_t . Hint: Start from $m_t = s(R_{t+1})$. Then think about how R_{t+1} relates to m_t and m_{t+1} . For simplicity, set $\sigma = 1$.
- 5. Define a steady state with valued fiat money.
- 6. Does it exist? What is the intuition?
- 7. For the steady state where fiat money is not valued, solve for R. For simplicity, set $\sigma = 1$.
- 8. For the steady state without trees, solve for R and s. The value of σ does not matter here.

End of exam.

2 Answer: OLG with Money and Trees

Based on Sargent and Ljunqvist, exercises 8.1 and 8.3.

- 1. Household: $\max u(c_t^y) + u(c_{t+1}^o)$ subject to $c_t^y + m_t + \alpha_t q_t = e_1$ and $c_{t+1}^o = e_2 + m_t/\pi_{t+1} + \alpha_t (d + q_{t+1})$.
- 2. Saving function: From the standard Euler equation, where $s(R_{t+1}) = e_1 c_t^y = m_t + \alpha_t q_t$.
- 3. Equilibrium:

Objects: $\{c_t^y, c_t^o, \alpha_t, m_t, q_t, p_t, R_t\}$ Equations:

- (a) household: Euler equation and 2 budget constraints (portfolio composition is indeterminate)
- (b) goods market: $N(c_t^y + c_t^o) = N(e_1 + e_2) + d$
- (c) money market: $m_t = M/(Np_t)$
- (d) tree market: $\alpha_t = 1/N$
- (e) identities: $\pi_{t+1} = p_{t+1}/p_t$; $R_{t+1} = p_t/p_{t+1} = (d+q_{t+1})/q_t$.
- 4. Offer curve: Note that $R_{t+1} = m_{t+1}/m_t$. Substitute that into

$$m_t = s\left(R_{t+1}\right) = \frac{e_1 - e_2\left(m_{t+1}/m_t\right)^{-1}}{1 + \left(m_{t+1}/m_t\right)^{1-1}}$$
(2)

Solving yields $m_{t+1} = e_2/(e_1/m_t - 2)$ which is increasing.

- 5. Steady state: $\{c^y, c^o, \alpha, q, m, \pi, R\}$ that solve:
 - (a) household, goods market, money market, tree market: unchanged
 - (b) identities: R = 1 = 1 + d/q.
- 6. A stationary equilibrium does not exist. Intuition: Trees are always valued. But there cannot be a constant q that yields R = 1. But only R = 1 is consistent with constant money balances.
- 7. Stationary equilibrium without money: We still need q to be constant, so R = 1 + d/q > 1. We also have s(R) = q. With log utility ($\sigma = 1$): $s(R) = (e_1 - e_2/R)/2 = q = d/(R-1)$. That can be solved for R > 1.
- 8. Stationary equilibrium without trees: We still need p to be constant, so R = 1. Then $s(R) = (e_1 e_2)/2 = m$. The rest is just plugging into budget constraints.

End of file.