Dynamic Contracts

Prof. Lutz Hendricks

Econ720

December 5, 2016

Issues

- Many markets work through intertemporal contracts
- Labor markets, credit markets, intermediate input supplies, ...
- Contracts solve (or create) a number of problems:
 - 1. Insurance: firms insure workers against low productivity shocks.
 - 2. Incentives: work hard to keep your job.
 - 3. Information revelation: you can lie once, but not over and over again.

If there are no frictions, agents can write complete contracts. Frictions prevent this:

- 1. Lack of **commitment**: borrowers can walk away with the loan.
- 2. Private **information**: firms don't observe how hard employees work.

We study optimal contracts for these frictions.

An analytical trick

- Dynamic contracts generally depend on the entire history of play.
 - "Three strikes and you are out"
- ► The set of possible histories grows exponentially with *t*.
- A trick, due to Abreu et al. (1990), makes this tractable.
- Use the promised expected future utility as a state variable.
- Then the current payoff can (often) be written as a function of today's play and promised value.

Money Lender Model

Money lender model

Thomas and Worrall (1990), Kocherlakota (1996) The problem:

- A set of agents suffer income shocks.
- ► They borrow / lend from a "money lender".
- They cannot commit to repaying loans.
- How can a contract be written that provides some insurance?

Applications:

- Credit markets with default
- Sovereign debt

The contract may not be explicitly include state-contingent payoffs

Environment

- The world lasts forever.
- There is one non-storable good.
- A money lender can borrow / lend from "abroad" at interest rate β⁻¹.
- A set of agents receive random endowments y_t .
- They can only trade with the money lender.

Preferences

$$E\sum_{t=0}^{\infty}\beta^t u(c_t)$$

Note: β determines time preference and interest rate.

Endowments

- Each household receives iid draws y_t.
- y takes on S discrete values, \overline{y}_s .
- Probabilities are Π_s .

Complete markets

- Households could achieve full insurance by trading Arrow securities.
- Consumption would be constant at the (constant) mean endowment.

We consider 3 frictions:

- 1. Households cannot commit not to walk away with a loan.
- 2. Households have private information about y_t .
- 3. Households have private information and a storage technology.

The optimal contracts in the 3 cases are dramatically different.

Sample consumption paths

(a) Lack of commitmentLjungqvist and Sargent (2004)

(b) Private information

Sample consumption paths

Figure 19.2.2: Typical consumption path in environment c.

(c) Private information and storage Ljungqvist and Sargent (2004) Assumptions:

- 1. the money lender offers the contract to the household
- 2. the household can accept or reject
- 3. the household accepts any contract that is better than autarky

How to set up the problem

- The optimal contract can be written as an optimization problem:
 - max profits
 - subject to: participation constraints.
- The state is the promised future value of the contract.
- To characterize, take first-order conditions.

One Sided Commitment

One sided commitment

Assumption:

- The money lender commits to a contract.
- Households can walk away from their debt.
- As punishment, they live in autarky afterwards.

The contract must be self-enforcing.

Applications:

- Loan contracts.
- Labor contracts.
- International agreements.

Contract

- We can study an economy with one person there is no interaction.
- ► A contract specifies an allocation for each history: h_t = {y₀,...,y_t}
- An allocation is simply household consumption:

$$c_t = f_t(h_t) \tag{1}$$

• The money lender collects y_t and pays c_t .

Contract

Money lender's profit:

$$P = E \sum_{t=0}^{\infty} \beta^{t} \left(y_{t} - f_{t} \left(h_{t} \right) \right)$$
(2)

$$v = E \sum_{t=0}^{\infty} \beta^{t} u(f_{t}(h_{t}))$$
(3)

Participation constraint

- With commitment, the lender would max P subject to the resource constraint.
 - What would the allocation look like?
- Lack of commitment adds a participation constraint:

$$\underbrace{E_{\tau} \sum_{t=\tau}^{\infty} \beta^{t-\tau} u(f_t(h_t))}_{\text{stay in contract}} \ge \underbrace{u(y_{\tau}) + \beta v_{AUT}}_{\text{walk away}}$$
(4)

• This must hold for every history h_t .

Autarky Value

If the agent walks, he receives

$$v_{AUT} = E \sum_{t=0}^{\infty} \beta^t \ u(y_t) = \frac{E \ u(y_t)}{1-\beta}$$

(5)

Recursive formulation

- The contract is not recursive in the natural state variable y_t .
- ► History dependence seems to destroy a recursive formulation.
- ▶ We are looking for a state variable *x_t* so that we can write:

 $c_t = g(x_t, y_t)$ $x_{t+1} = l(x_t, y_t)$

Recursive formulation

The correct state variable is the promised value of continuation in the contract:

$$v_t = E_{t-1} \sum_{j=0}^{\infty} \beta^j \ u(c_{t+j})$$
 (6)

- The household enters the period with promised utility v_t , then learns y_t .
- The contract adjusts c_t and v_{t+1} to fulfill the promise v_t .
- Proof: Abreu et al. (1990)

The state variable for the lender is v.

The obective is to design payoffs, c_s and w_s , for this period to max discounted profits

$$P(v) = \max_{c_s, w_s} \sum_{s=1}^{S} \prod_{s} \left[(\bar{y}_s - c_s) + \beta P(w_s) \right]$$
(7)

 w_s is the value of v' promised if state s is realized today.

Constraints

1. Promise keeping:

$$\sum_{s=1}^{S} \prod_{s} \left[u(c_s) + \beta w_s \right] \ge v \tag{8}$$

2. Participation:

$$u(c_s) + \beta w_s \ge u(\bar{y}_s) + \beta v_{AUT}; \quad \forall s$$
(9)

3. Bounds:

$$c_s \in [c_{\min}, c_{\max}]$$
 (10)
 $w_s \in [v_{AUT}, \overline{v}]$ (11)

Cannot promise less than autarky or more than the max endowment each period.

Lagrangian / Bellman equation

$$P(v) = \max_{c_s, w_s} \sum_{s=1}^{S} \prod_s [(\bar{y}_s - c_s) + \beta P(w_s)]$$
(12)
+ $\mu \left[\sum_{s=1}^{S} \prod_s [u(c_s) + \beta w_s] - v \right]$ (13)
+ $\sum_s \prod_s \lambda_s [u(c_s) + \beta w_s - u(\bar{y}_s) - \beta v_{AUT}]$ (14)

Notes:

- 1. W.I.o.g. I wrote the multipliers as $\prod_s \lambda_s$.
- 2. Participation constraints may not always bind. Then $\lambda_s = 0$.

FOCs

$$c_s : \Pi_s = u'(c_s) \Pi_s [\lambda_s + \mu]$$

$$w_s : -\Pi_s P'(w_s) = \Pi_s [\lambda_s + \mu]$$
(15)
(16)

Assumption: P is differentiable. (Verify later) Envelope:

$$P'(v) = -\mu \tag{17}$$

What do these say in words?

FOCs

Simplify:

$$u'(c_s) = -P'(w_s)^{-1}$$
(18)

This implicitly defines the consumption part of the contract: $c_s = g(w_s)$.

Properties:

- Later we see that P(v) is concave (P' < 0, P'' < 0).
- ► Therefore: $u''(c_s)dc_s = \frac{P''(w_s)}{[P'(w_s)]^2}dw_s$ and dc/dw > 0.
- A form of consumption smoothing / insurance.
- If something makes the agent better off, the benefits are spread out over time.

Sub Envelope in for μ :

$$P'(w_s) = P'(v) - \lambda_s \tag{19}$$

This describes how ν evolves over time.

What happens depends on whether the participation constraint binds.

Case 1: Participation constraint does not bind

 $\lambda_s = 0$

Therefore $P'(w_s) = P'(v)$ and $w_s = v$ regardless of the realization y_s . Consumption is a function of v, given by the FOC $u'(c_s) = -P'(v)^{-1}$

also constant over time

The household is fully insured against income shocks

- Intuition: this happens for low y.
- ► The lender may lose in such states: he pays out the promise.

Case 2: Participation constraint binds

$$\lambda_{s} > 0$$

 $P'(w_{s}) = P'(v) - \lambda_{s} < P'(v)$

Therefore $w_s > v$: promised value rises.

Participation constraint:

$$u(c_s) + \beta w_s = u(\bar{y}_s) + \beta v_{AUT}$$
(20)

implies

 $c_s < \bar{y}_s \tag{21}$

because $w_s \ge v \ge v_{AUT}$ (any contract must be better than autarky - otherwise the agent walks).

Intuition

Walking away from the contract is attractive in good states (high y_s).

The money lender must collect something in order to finance insurance in bad states: $c_s < \overline{y}_s$

The household gives up consumption in good times in exchange for future payoffs.

To make this incentive compatible, the lender has to raise future payoffs: $w_s > v$.

Amnesia

When the participation constraint binds, c and w are solved by

$$u(c_s) + \beta w_s = u(\bar{y}_s) + \beta v_{AUT}$$

$$u'(c_s) = -P'(w_s)^{-1}$$

This solves for

$$c_s = g_1(\bar{y}_s)$$
$$w_s = l_1(\bar{y}_s)$$

v does not matter!

Intuition: The current draw y_s is so good that walking into autarky pays more than v.

The continuation contract must offer at least $u(\bar{y}_s) + \beta v_{AUT}$, regardless of what was promised in the past.

The optimal contract

- Intuition: For low y the participation constraint does not bind, for high y it does.
- The threshold value $\overline{y}(v)$ satisfies:
 - 1. Consumption obeys the no-participation equation $u'(c_s) = -P'(v)^{-1}$.
 - 2. The participation constraint binds with $w_s = v$: $u(c_s) + \beta v = u(\bar{y}[v]) + \beta v_{AUT}$

ȳ'(ν) > 0: Higher promised utility makes staying in the contract more attractive.

Consumption function

Ljungqvist and Sargent (2004)

Properties of the contract

- 1. For $y \leq \overline{y}(v)$: Pay constant $c = g_2(v)$ and keep c, v constant until the participation constraint binds.
- 2. For $y > \overline{y}(v)$: Incomplete insurance. v' > v.
- 3. v never decreases.
- 4. c never decreases.
- 5. As time goes by, the range of y's for which the household is fully insured increases.
- 6. Once a household hits the top $y = \overline{y}_S$: *c* and *v* remain constant forever.

Sample consumption path

Ljungqvist and Sargent (2004)

Intuition

- ▶ With two-sided commitment, the firm would offer a constant *c*.
 - It would collect profits from lucky agents and pay to the unlucky ones.
 - Because of risk aversion, the average c would be below the average y.
 - The firm earns profits.
- With lack of commitment:
 - Unlucky households are promised enough utility in the contract, so they stay. Full insurance.
 - Lucky households have to give up some consumption to pay for future payouts in bad states.
 - To compensate, the firm offers higher future payments every time a "profit" is collected.

Implications

Think about this in the context of a labor market.

- "Young" households are poor (low v and c).
- Earnings rise with age.
- Earnings volatility declines with age (because the range of full insurance expands).
- Old workers are costly to employ. Firms would like to fire them.

This broadly lines up with labor market data.

Implications

- Inequality is first rising, then falling.
- Young households are all close to v_0 initially.
- Old households are perfectly insured in the limit.
- Middle aged households differ in their histories and thus payoffs.

Numerical example

Outcomes as function of y_s . Ljungqvist and Sargent (2004)

Reading

- Ljungqvist and Sargent (2004), ch. 19.
- Abreu et al. (1990) the paper that introduced the idea of using promised values as the state variable.

References I

- Abreu, D., D. Pearce, and E. Stacchetti (1990): "Toward a theory of discounted repeated games with imperfect monitoring," *Econometrica: Journal of the Econometric Society*, 1041–1063.
- Kocherlakota, N. R. (1996): "Implications of efficient risk sharing without commitment," *The Review of Economic Studies*, 63, 595–609.
- Ljungqvist, L. and T. J. Sargent (2004): *Recursive macroeconomic theory*, 2nd ed.
- Thomas, J. and T. Worrall (1990): "Income fluctuation and asymmetric information: An example of a repeated principal-agent problem," *Journal of Economic Theory*, 51, 367–390.