Open Economy Model

Prof. Lutz Hendricks

Econ520

March 18, 2024

Objectives

In this section you will learn

- 1. how to extend the AS/AD model to an open economy
- 2. how to analyze monetary and fiscal policy in an open economy
- 3. why the Central Bank loses control over the money supply under fixed exchange rates

Equilibrium with open economy

We need to clear

- 1. the goods market: IS + AS
- 2. the money market: LM
- 3. the foreign exchange market

Four cases:

- 1. exchange rate: fixed or floating
- capital mobility: perfect or none determines FX market clearing conditions

What differs

Opening up the economy changes:

- 1. Foreign demand contributes to AD. The IS curve changes.
- 2. Foreign exchange market clearing.

 We have one more market and one more price (exchange rate).

Open Economy IS Curve

Start from the definition of aggregate demand in dollar terms

$$PZ = P(C+I+G+X) - E \times P^* \times IM$$
 (1)

P: domestic price level (dollars)

P*: foreign price level (pesos)

E: exchange rate (dollars/pesos)

EP*: U.S. price of imports (dollars)

Houlds for

Open Economy IS Curve

Dekrui vants?

Divide by P:

$$Z = C(Y - T) + I(Y, i) + G + X - \underbrace{E \times P^*}_{P} IM$$
 (2)

 $\varepsilon = \frac{P}{EP^*}$ is the relative price of foreign goods

the real exchange rate

Nominal Exchange Rate

Definition

The nominal exchange rate E is the price of one currency in terms of another

It comes in 2 "directions":

1. $E_{\$/\$}$: the price of yen: 1/116 \\$/\\\

2. $E_{Y/\$}$: the price of \$: 116 imes/\$

 $E_{Y/\$}$ rises - dollar appreciates (pay more yen for each dollar)

In the model: E is in $\frac{\$}{Y}$.

Therefore: $E \uparrow$ means that the dollar **depreciates**.

Real Exchange Rate

Definition

The real exchange rate answers the question: how much do the same goods cost in the U.S. relative to Japan?

- Form a "basket" of goods.
- ► Compute its cost in the U.S. (\$P) and Japan $(¥P^*)$.
- Convert into dollars using the nominal exchange rate: the basket costs $E_{\$/\$}P^*$ in Japan.
- The ratio of dollar costs is the real exchange rate:

$$\varepsilon = \frac{P}{E_{\$/\$}P^*} = \frac{\text{cost in USA (\$)}}{\text{cost in Japan (\$)}}$$
(3)

Note: sometimes the RER is defined the other way around: $E_{\$/\$}P^*/P$.

Real exchange rate

The RER has no units:

$$[\varepsilon] = \frac{\$/good}{\$/\$ \times \$/good} \tag{4}$$

If $\varepsilon = 1.5$ this means: in the U.S. goods cost 50% more than in Japan.

 $\varepsilon \uparrow$ means: foreign goods get cheaper

When the dollar appreciates, $\varepsilon \uparrow$

A point to remember

In this class: dollar appreciation means $E \downarrow$ and $\varepsilon \uparrow$.

Determinants of Exports

Export quantity = (real) export value = X

- because exports are in units of the domestic good
- their relative price is 1

Export quantity depends on foreign income Y^* and relative prices ε .

Income effect: $Y^* \uparrow \Longrightarrow X \uparrow$

richer countries import more

Substitution effect: $\varepsilon \uparrow \Longrightarrow X \downarrow$

E=PA

- domestic goods are more expensive
- the dollar value of exports falls unambiguously

Determinants of Imports

Import quantities IM depend on

- ▶ income *Y* and
- ▶ relative prices €

Income effect: $Y \uparrow \Longrightarrow IM \uparrow$

richer countries import more

Substitution effect: $\varepsilon = \frac{P}{EP^*} \uparrow \Longrightarrow IM \uparrow$

▶ dollar appreciates (in real terms) ⇒ imports rise

We write $\underline{IM}(\underbrace{Y}_{+},\underbrace{\varepsilon}_{+})$

Dollar value of imports

The dollar value of imports is $E \times P^* \times IM$. In real terms (units of domestic goods):

$$\frac{E \times P^* \times IM}{P} = \frac{IM}{\varepsilon} \tag{5}$$

Real dollar appreciation $(\varepsilon \uparrow)$

- raises the quantity imported
- IMT
- reduces (real) import prices 🖊 👈
- the change in import values is ambiguous

Net Exports

The contribution of international trade to demand:

$$NX(\underline{Y}, \underline{Y}^*, \underline{\varepsilon}) = X(\underline{Y}^*, \underline{\varepsilon}) - IM(\underline{Y}, \underline{\varepsilon}) / \varepsilon$$
 (6)

- $Y \uparrow \Longrightarrow \text{ trade balance } \downarrow$
 - richer countries import more
- $\varepsilon\!\uparrow \Longrightarrow$ trade balance ambiguous
 - so we use evidence to sign this effect (below).

Currency Depreciation

How a depreciation affects NX is theoretically ambiguous.

- Substitution effect:
 - dollar depreciates
 - foreign good become more expensive
 - ► $IM \downarrow$ and $X \uparrow$
- Value effect:
 - the dollar value of a given IM quantity rises

We will assume that a depreciation improves the trade balance:

$$\varepsilon \downarrow \Longrightarrow X - IM/\varepsilon \uparrow \tag{7}$$

J-Curve

IS Curve

$$Y = C(Y - T) + I(Y, i) + G + \underbrace{X(Y^*, \varepsilon) - IM(Y, \varepsilon)/\varepsilon}_{NX(Y, Y^*, \varepsilon)}$$
(8)

Slope is negative: $i \uparrow \Longrightarrow Y \downarrow$

- same reason as in closed economy (investment falls)
- this holds ε fixed (won't be true in equilibrium)

Shifters are

- ightharpoonup autonomous demands: C_0, I_0, G, Y^* (positive)
- taxes T (negative)
- real exchange rate ε (dollar depreciation improves NX)

IS Curve

This looks just like a closed economy IS curve (but with a new shifter: ε)

Foreign exchange market clearing

Exchange Rate Interventions

Almost all central banks intervene in FX markets

The mechanics:

buy dollars and sell Euros (or vice versa)

Key point

Each intervention changes the money supply.

This produces a conflict: the CB has one instrument (M) but 3 targets

- stable inflation
- stable output
- stable exchange rate

Exchange Rate Regimes

Two extremes:

- ▶ **floating**: the CB does not buy or sell FX
- **fixed:** the CB stands ready to buy/sell any amount of FX at a fixed E

Reality is somewhere in between

We first study fixed exchange rates (easier).

Exchange rates in the short run

Exchange rates play a dual role:

- asset price: foreign vs domestic bonds, stocks, etc.
 massive trade volume \$2,400 trillion per year (BIS, 2019)
- goods price:
 exports vs imports
 much smaller trade volume

Short-run FX movements are mainly due to capital flows (asset trades).

Pegging and Monetary Control

How can the exchange rate be fixed when capital is mobile?

With a fixed exchange rate (that is credible), domestic bonds and foreign bonds are perfect substitutes.

They have to pay the same interest rate:

$$i = i^* \tag{9}$$

The CB has no control over the interest rate

What happens if the Fed tries to change the interest rate?

- short answer: capital flows overwhelm the Fed
- long answer: below

Monetary control

Money market clearing

$$M/P = YL(i^*) \tag{10}$$

The CB has no control over the money supply either. Why?

- ▶ short answer: the Fed needs to set M/P to keep $i = i^*$
 - otherwise: capital flows overwhelm the Fed
- long answer: below

Open Market Operations

What happens if the CB tries to increase the money supply?

▶ Open market operation: buy bonds in exchange for money.

Open Market Operations

The CB buys bonds with high powered money

- ► *LM* shifts right: $M \uparrow, i \downarrow$
- downward pressure on the dollar

In the FX market: CB must buy dollars to keep the peg

- ► *LM* shifts left: $M \downarrow \Longrightarrow i = i^*$
- ► FX reserves ↓

Net result:

- The CB has effectively paid for the bonds with FX reserves.
- ► M stays unchanged (as required by $i = i^*$)

Reality Check

- ▶ We have assumed perfect capital mobility (UIP)
- ▶ In reality, Central Banks have some control over the domestic interest rate
- Outcomes are somewhere in between closed economy and perfect capital mobility.

Summary

We now have the pieces required to figure out equilibrium in the open economy:

1. goods market demand: IS

$$Y = C(Y - T) + I(Y, i) + G + X(Y^*, \varepsilon) - IM(Y, \varepsilon)/\varepsilon$$
 (11)

2. LM (same as closed economy)

$$M/P = YL(i) \tag{12}$$

- 3. AS (same as closed economy)
- 4. FX market clearing

$$i = i^* \tag{13}$$

Analyzing the Model

The model equations are the same for fixed and floating exchange rates.

except for a detail in FX market clearing...

But the logic of the model varies.

- 1. Floating:
 The exchange rate is endogenous (clears the FX market)
 The Fed controls M
- 2. Fixed:
 The exchange rate is exogenous (fixed by the Fed) M is endogenous (needs to adjust to keep $i = i^*$)

Reading

Blanchard / Johnson, Macroeconomics, 6th ed., ch. 18-20.

Explanations of UIP:

- ► Investopedia
- ► The Balance