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Abstract

This paper is motivated by the fact that nearly half of U.S. college students drop

out without earning a bachelor’s degree. Its objective is to quantify how much uncer-

tainty college entrants face about their graduation outcomes. To do so, we develop

a quantitative model of college choice. The innovation is to model in detail how stu-

dents progress towards a college degree. The model is calibrated using transcript and

financial data. We find that more than half of college entrants can predict whether

they will graduate with at least 80% probability. As a result, stylized policies that

insure students against the financial risks associated with uncertain graduation have

little value for the majority of college entrants.
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1 Introduction

A growing literature emphasizes that college is a risky investment.1 This is motivated by
the empirical finding that nearly half of all U.S. college students drop out before earning a
bachelor’s degree (Bound and Turner, 2011). A separate branch of the literature points out
that college choices are strongly related to student characteristics, especially their cognitive
skills (Belley and Lochner, 2007). These findings suggest that college dropouts may lack
the abilities or preparation required for earning a college degree.

Whether students drop out of college mainly because of endowments (heterogeneity) or
shocks (uncertainty) has important policy implications. If graduation outcomes are highly
uncertain, policies that insure students against failure, such as income contingent loans
(Chapman, 2006), may increase welfare. On the other hand, if dropping out is mainly due
to students’ inability to satisfy the requirements for a college degree, policies that improve
student preparation, such as remedial coursework (Bettinger and Long, 2009), may be called
for.

The main purpose of this paper is to quantify the relative importance of heterogeneity and
uncertainty for college dropout decisions. Put differently, we ask: how predictable or risky
is graduation from the point of view of college entrants?

Transcript data. To address this question, we develop a structural model of college
choice. We depart from much of the literature by modeling in detail how students progress
towards satisfying the requirements for a college degree. This allows us to introduce tran-
script data, which we argue are key for measuring the distribution of college preparation
among freshmen and, therefore, their graduation probabilities. Transcripts reveal how
rapidly students progress towards a college degree, which is directly related to their grad-
uation chances. Moreover, transcripts provide repeated indicators of college preparation
for the same individual. This enables the model to decompose the observed dispersion in
college outcomes into the contributions of persistent heterogeneity and transitory shocks.

We obtain college transcripts for a representative sample of high school sophomores in 1980
from the Postsecondary Education Transcript Study (PETS, section 2). We focus on how
rapidly students accumulate college credits. The data also contain information about high

1 Recent work includes Arcidiacono et al. (2012), Athreya and Eberly (2013), Stange (2012), and Trachter
(2015).
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school GPAs, financial resources, college costs, and degrees earned. This information is
used to calibrate the structural model.

The transcripts reveal large and persistent heterogeneity in individual credit accumulation
rates. In their freshmen year, students in the 80th percentile of the credit distribution earn
twice as many credits as do students in the 20th percentile. The correlation between credit
accumulation rates across years is 0.43. Credit accumulation is strongly related to high
school GPAs and to college graduation. College graduates earn about 50% more credits
than do college dropouts. After 3 years in college, dropouts have earned fewer than half of
the 125 credits that students have earned, on average, when they graduate.

Structural model. To recover what the transcript data imply for the predictability of
college graduation, we develop a structural model of college choice (section 3).2 The model
follows one cohort of high school graduates through their college and work careers. At
high school graduation, students are endowed with heterogeneous “abilities” and financial
resources.3 Following Manski (1989), we assume that high school graduates only observe a
noisy signal of their abilities. They choose whether to attempt college or work as high school
graduates. While in college, students make consumption-savings and work-leisure decisions
subject to a borrowing constraint. Students face financial shocks that affect college costs
and wages, as well as preference shocks.

Our main departure from the literature is to model students’ progress through college
in detail.4 This allows us to map transcript data directly into model objects. We model
credit accumulation as follows. In each period, a college student attempts a fixed number of
courses. He passes each course with a probability that increases with his ability. At the end
of each year, students who have earned a given number of courses graduate. The remaining
students update their beliefs about their abilities based on the information contained in
their course outcomes. Then they decide whether to drop out or continue their studies in
the next period. Students must drop out if they lack the means to pay for college, or if
they fail to earn a degree after 6 years in college.

2 The model extends Hendricks and Leukhina (2014), mainly by incorporating financial shocks while in
college.

3 We interpret the term “ability” to mean any persistent characteristic that affects the rate at which a
student accumulates college credits (see subsection 3.5).

4 In much of the literature, college is a black box. Exceptions include Arcidiacono et al. (2012), Garriga
and Keightley (2007), and Stange (2012).
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Results. We calibrate the model to match a rich set of observations that we construct
from PETS, High School & Beyond (HS&B) and NLSY79 data (section 4). The calibrated
model successfully accounts for students’ credit accumulation, college entry and dropout
decisions, both across years and across high school GPA quartiles, as well as for financial
statistics.

The model allows us to compute the distribution of individual graduation probabilities,
based on the information available to high school graduates at the time of college entry.
Our main finding is that college graduation is highly predictable for a large fraction of
college entrants (section 5). At the time of college entry, 29% of students face graduation
probabilities above 80% while 24% face graduation probabilities below 20%. Among high
school graduates who do not enter college, graduation probabilities are far worse. 91% of
these students face graduation probabilities below 20%.

We show that the high predictability of graduation outcomes has three causes.

1. The model implies substantial heterogeneity in students’ graduation prospects. By
this, we mean the probability of completing the required number of courses within
the 6 years that students may be enrolled in college. Among college entrants, 61%
face graduation prospects above 80% and 9% face graduation prospects below 20%.

2. Students can accurately predict their abilities, and thus their graduation prospects,
before they make college entry decisions. In other words, their ability signals are quite
precise.

3. Students’ graduation probabilities are closely linked to their graduation prospects.

Financial heterogeneity plays a minor role for the predictability of college outcomes. One
reason is that most model students are not close to their borrowing limits.5 A second reason
is that students can increase work hours to finance additional time in college.

We now discuss how the model recovers the distribution of graduation prospects, mainly
from transcript data. The key data feature is the large dispersion of credit accumulation
rates. According to our model, the number of courses passed is drawn from a Binomial
distribution. Accounting for the observed dispersion in credit accumulation rates then
requires substantial heterogeneity in the probabilities with which students pass courses. The

5 This finding is in line with other research based on NLSY79 data (Carneiro and Heckman, 2002).
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Binomial distribution further implies that graduation prospects, the probabilities of passing
enough courses for graduation, increase sharply in the course passing probability. Hence,
the model implies that a large fraction of students face very high or very low graduation
prospects (subsection 5.2).

The large heterogeneity in graduation prospects implies that many students’ graduation
probabilities are highly predictable (subsection 5.3). The reason is that the financial in-
centives for persisting in college depend strongly on students’ graduation prospects. For
students with weak graduation prospects, staying in college until graduation (or for the
permitted 6 years) reduces lifetime earnings relative to their optimal dropout decisions. As
a result, many low ability students drop out of college, even though they could graduate.
High ability students, on the other hand, progress rapidly towards graduation and can ex-
pect large earnings gains if they persist in college. These students rarely drop out, even if
they suffer adverse course outcomes or financial shocks while in college.

We investigate why the model implies that students’ ability signals are very precise (see
subsection 5.4). To do so, we recalibrate the model while fixing the precision of the ability
signal at a lower level. Since we assume that high school GPAs are part of students’ infor-
mation sets, this also lowers the correlation between abilities and GPAs. The model then
implies that high GPA students are too similar to low GPA students in terms of their credit
accumulation rates, their college outcomes, and their lifetime earnings. Increasing signal
noise also raises the option value of enrolling in college (the value of learning increases). As
a result, students remain in college longer than in the data.

Our main finding that graduation outcomes are highly predictable for the majority of
college freshmen is based on model outcomes. Two modeling assumptions are central for
this result. First, we assume that students use all available information to form their
expectations about college outcomes. Second, how we model credit accumulation is central
for decomposing variation in earned credits into the contributions of student endowments
and luck. Unfortunately, we cannot draw on much prior research to motivate our modeling
of credit accumulation.6 We also lack direct evidence that students in the data make
predictions that are as accurate as those of students in the model. We view the finding
that our model accounts for a broad range of college related observations, including the

6 Eckstein and Wolpin (1999) model credit accumulation in high school. Garriga and Keightley (2007)
postulate a credit production function that is multiplicative in ability, registered credits, and effort.
However, they lack the transcript data needed to validate the assumed functional form.
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dispersion and persistence of credits, as providing indirect support.

Policy implications. We take a first step towards exploring the policy implications of
highly predictable college outcomes (section 6). We study the welfare gains generated by
two stylized policy interventions. The first intervention provides insurance against the
consumption risks associated with either dropping out of college or taking a long time to
earn a degree. The second intervention provides students with information about their
abilities and the associated graduation prospects before the college entry decision is made.7

In both cases, we find that the welfare gains are small for a large fraction of college entrants,
especially for those who face little uncertainty about their graduation outcomes.

1.1 Related Literature

This paper relates to a large literature that studies which individual characteristics predict
whether a student will be successful in college. Most studies estimate probit or logit models,
based on administrative data for a single college.8 The focus of this literature is very
different from ours. Its goal is to inform the design of college policies aimed at improving
retention rates.

A growing literature studies structural models of college choice with dropout risk.9 Our
main departure from this literature is to model in more detail how students progress through
college. In this respect our approach resembles Garriga and Keightley (2007) and Trachter
(2015). Both study models where graduating from college requires a fixed number of earned
credits. We add to their analyses by introducing transcript data, which we argue are central
for measuring students’ graduation chances (section 2). Compared with most previous
studies, we also have access to more detailed data on college costs, scholarships, loans,
parental transfers, and earnings in college.

7 Actual policies that pursue these goals include income contingent student loans (Chapman, 2006) and
dual enrollment programs (Stephanie Marken et al., 2013).

8 Recent examples include Glynn et al. (2011) and Lin et al. (2012). Astin (1997) and Light and Strayer
(2000) use data for many colleges. See Reason (2009) for a survey.

9 Examples include Akyol and Athreya (2005), Altonji (1993), Athreya and Eberly (2013), Castex (2016),
Caucutt and Kumar (2003), Chatterjee and Ionescu (2012), Johnson (2013), and Keane and Wolpin
(1997). Since we are unable to determine how much college completion risk these papers imply, we
cannot compare our findings with theirs.
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Stange (2012) also uses transcript data to estimate a model of risky college completion.
However, in his model, the transcript data play a very different role. College grades affect
the utility derived from studying, rather than the students’ chances of completing the
requirements for earning a degree. As in much of the literature, all students in Stange’s
model can earn a degree by staying in college for 4 years. By contrast, our model highlights
that students differ in their abilities to satisfy the requirements for earnings a college degree.
We use transcript data to measure student abilities that affect their progress through college
and thus their chances of graduation.

2 Transcript Data and Graduation Prospects

In this section, we explain how transcript data help to identify the distribution of students’
graduation probabilities. First, we describe the data.

2.1 Data Description

We obtain college transcripts from the Postsecondary Education Transcript Study (PETS),
which is part of the High School & Beyond dataset (HS&B; see United States Department
of Education. National Center for Education Statistics 1988).10 The data cover a represen-
tative sample of high school sophomores in 1980. Participants were interviewed bi-annually
until 1986. In 1992, postsecondary transcripts from all institutions attended since high
school graduation were collected.

We retain all students who report sufficient information to determine the number of college
credits attempted and earned, the dates of college attendance, and whether a bachelor’s
degree was earned. HS&B also contains information on college tuition, financial resources,
parental transfers, earnings in college, and student debt, which we use to calibrate the
structural model presented in section 3. Appendix A provides additional details.

2.2 Credit Accumulation Rates

To measure students’ progress towards earning a college degree, we focus on the number of
completed college credits. Since the data we present are not commonly used in economics,

10The data construction follows Hendricks and Leukhina (2014).
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Table 1: College Credits by Year

Group Year 1 Year 2 Year 3 Year 4

20th percentile 17 41 68 100
50th percentile 28 57 87 119
80th percentile 33 66 98 130

College dropouts 21 43 60 77
College graduates 31 60 90 119

Fraction dropping out 16.6 14.5 8.3 4.9

Notes: The table shows the number of credits earned at the end of each year in college
by students in the 20th, 50th, and 80th percentile of the credit distribution. The bottom
panel shows the average number of credits earned by students who eventually drop out or
graduate from college. “Fraction dropping out” refers to the fraction of college entrants that
drop out at the end of each year.
Source: High School & Beyond.

we first present summary statistics.

Table 1 shows the distribution of earned credits at the end of each of the first four years
in college. The median student earns around 30 credits in each year. Given that students
graduate, on average, with 125 credits, the median student is on track to graduate in 4 or
5 years.

A key feature of the data is substantial heterogeneity in credit accumulation rates. In the
first year, students in the 80th percentile earn nearly twice as many credits compared with
students in the 20th percentile. Over time, this ratio declines. One likely reason is that the
least successful students drop out.

The bottom panel of Table 1 shows that credit accumulation rates are strongly associated
with college outcomes. Students who eventually graduate from college earn around 50%
more credits than do college dropouts. The gap is fairly stable over time. After three years
in college, dropouts have earned fewer than half of the roughly 125 credits required for
graduation.

Our subsequent analysis focuses on student abilities, measured by HS GPAs, as the main
determinant of credit accumulation rates. To motivate this focus, we present evidence
consistent with the notion that student abilities are indeed the main predictor of college
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outcomes, while financial resources are less important.

Table 2 reports measures of college success for students who enroll in college for at least
two years. Students are divided into quartiles according to their HS GPAs and according
to two measures of their financial situation: financial resources, and average hours worked
while in college.11 For each quartile, Table 2 reports three measures of college success: the
average number of credits earned (panel a), the fraction of students that graduate from
college (panel b), and the fraction of students who persist from the second to the third year
in college (panel c).

For all measures of college success, we observe large gaps between students with high versus
low HS GPAs. The gaps between students with more or less generous financial endowments
are much smaller. For example, students in the top HS GPA quartile earn 15.6 more credits
compared with students in the bottom quartile. By contrast, the gap in credits earned
across financial resource quartiles is only 5.9. Across hours worked quartiles, the gaps are
consistently the smallest. These findings are consistent with a large literature on college
persistence which finds that academic ability (measured by test scores or HS GPAs) is the
main determinant of students’ success in college (see Astin and Oseguera, 2005; Bound
et al., 2010; Bowen et al., 2009).

Also consistent with the literature, we find a weak association between hours worked and
college outcomes (Stern and Nakata, 1991; Kalenkoski and Pabilonia, 2010; Scott-Clayton,
2011). The structural model developed in section 3 therefore abstracts from the possibility
that hours worked affect credit accumulation rates.

Table 3 studies the relationship between credit accumulation and HS GPAs in more detail.
The table shows the distribution of credits earned at the end of the second year in college
across HS GPA quartiles. The data reveal that credit accumulation rates and college
graduation rates are strongly related to high school GPAs. Students in the top GPA
quartile earns 60% more credits than do students in the bottom quartile. They are also 7
times more likely to earn a bachelor’s degree.12

11Financial resources are defined as the mean of parental transfers minus the net cost of college (tuition
and fees net of scholarships and grants). Financial resources and hours worked are averaged over the first
two years in college. Quartiles are defined for the universe of students who are enrolled in college for at
least two years.

12These gaps are larger than those reported in Table 2 because HS GPA quartiles are defined over the
universe of high school graduates rather than second year college students.
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Table 2: Student Characteristics and College Outcomes

(a) Mean credits
Q1 Q2 Q3 Q4 Gap

By GPA 46.3 52.9 56.3 61.9 15.6
(0.8) (0.7) (0.7) (0.6)

By hours worked 56.0 56.6 51.9 52.2 -3.8
(0.7) (0.7) (0.8) (0.8)

By fin. resources 53.2 53.0 55.4 59.1 5.9
(0.9) (0.9) (1.0) (0.7)

(b) Fraction graduating
Q1 Q2 Q3 Q4 Gap

By GPA 36.3 69.0 78.8 88.6 52.3
(2.4) (2.3) (2.1) (1.7)

By hours worked 70.8 77.9 62.3 59.6 -11.2
(2.1) (2.2) (2.5) (2.6)

By fin. resources 66.4 70.2 69.8 83.4 17.0
(2.8) (2.9) (2.9) (2.3)

(c) Fraction persisting to year 3
Q1 Q2 Q3 Q4 Gap

By GPA 68.8 84.8 91.2 94.6 25.8
(2.3) (1.8) (1.4) (1.2)

By hours worked 85.2 92.4 80.7 80.6 -4.6
(1.7) (1.4) (2.1) (2.1)

By fin. resources 82.9 83.4 87.2 93.6 10.7
(2.3) (2.3) (2.1) (1.5)

Notes: The table relates college outcomes to student characteristics. Students enrolled in
year two are divided into quartiles according to HS GPAs, average hours worked, or financial
resources (defined as average parental transfers minus the net cost of college). Panel (a)
shows mean credits earned after two years in college. Panel (b) shows the fraction of
students that eventually graduate. Panel (c) shows the fraction of students that persist
into the third year in college. Standard errors are in parenthesis. “Gap” refers to the
difference between the fourth and the first quartile.

10



Table 3: College Credits at the End of Year 2

Credit distribution Median credits Fraction
GPA quartile 20th 50th 80th CD CG graduating

1 21 38 57 32 57 10.7
2 36 50 62 46 57 24.9
3 37 55 64 44 58 50.8
4 50 61 68 45 62 73.6
All 41 57 66 44 60 52.5

Notes: The table shows the distribution of credits earned at the end of the second year in
college. Students are divided into quartiles according to their high school GPAs. “Fraction
graduating” is the fraction of college entrants that earns a bachelor’s degree.
Source: High School & Beyond.

Even within GPA quartiles there is substantial heterogeneity in credit accumulation rates.
In the lower quartiles, the 80th percentile of credits earned is around double that of the 20th

percentile. This suggests either that GPAs are noisy measures of student abilities or that
passing courses requires not only skills but also luck.

One observation that points towards an important role of skills rather than luck is the
substantial persistence of individual credit accumulation rates over time. We construct two
measures of persistence. First, the correlation between accumulation rates in consecutive
years (computed for all students who are enrolled in both years, averaged over the first 3
years in college) is 0.43. Second, we construct transition matrices for quartiles of credits
earned in t and t + 1. The average of the second largest eigenvalues of these transition
matrices is 0.47.

2.3 A Reduced Form Model

We now discuss how data on credit accumulation help to estimate the distribution of stu-
dents’ graduation probabilities. The central idea of this paper is that credit accumulation
rates contain information about students’ abilities or college preparation. These in turn af-
fect their chances of completing requirements for a degree. The structural model of section 3
formalizes this idea and quantifies its implications.
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To gain intuition, we study the relationship between credit accumulation rates and gradu-
ation chances in the context of a simple model. The model elements are as follows:

1. There is a population of college freshmen. At the start of year t = 1, each student
is endowed with n1 = 0 completed courses, with a random ability a ∼ N (0, 1), and
with a noisy signal of ability given by GPA = a+ ε where ε ∼ N (0, σ2

ε). In the data,
we observe high school GPAs, which we assume are an arbitrarily scaled increasing
function of GPA.

2. In each year, a college student tries nc = 12 courses. Passing a course yields 3

credits. The value of nc is chosen such that passing all courses yields the number of
credits earned per year by students in the 90th percentile of the credit distribution
(the number is the same in years 1 through 3).

3. A student of ability a passes each course with probability p(a) = γmin + 1−γmin
1+γ1e−γ2a

.
p(a) is a generalized logistic function.

4. A student graduates when he passes ngrad = 42 courses (earns 125 credits).

5. If a student fails to pass ngrad courses by the end of year Tc = 6, he drops out of
college. In HS&B data, only 5% of students remain in college for more than 6 years.

Estimating credit accumulation rates by ability. By calibrating the model to tran-
script data, we aim to decompose the observed dispersion in earned credits into the con-
tributions of heterogeneity in credit accumulation rates p and luck. To do so, we search
for a distribution of accumulation rates p that allows the model to match the empirical
distribution and persistence of earned credits.

To motivate this approach, consider what the model implies for the case where all students
share the same p, given by the median fraction of credits earned by the end of a given
year t. The distribution of nt+1 is then Binomial. Focusing on year 2, the 20th and 80th

percentiles of the Binomial distribution with 2nc trials and an average passing probability
of p = 54/ (2nc) are 48 and 60 credits, respectively. In the data, the corresponding values
are 41 and 66 credits. Clearly, heterogeneity in p is needed to account for the observed
dispersion of credits.

To estimate the dispersion of p, we calibrate the parameters of the p (a) function to minimize
the sum of squared deviation between the following model-implied and observed moments:
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(i) the number of earned credits for the 1st through 9th decile of the credit distribution
after two years in college; and (ii) the correlation of earned credits between the first and
the second year in college.

Figure 1 shows the implications of the calibrated model. Figure 1a compares the distribution
of credits implied by the model with the data. The correlation of credits implied by the
model of 0.56 is higher than in the data. One reason is that, in the data, the students
with the worst course performance tend to drop out. Figure 1b shows that the calibrated
distribution of p (a) is not far from uniform over the range [0.4, 1].

The large heterogeneity in p has an implication that is central for the structural model.
The binomial distribution of credits implies that the probability of earning enough credits
for graduation in the permitted 6 years, which we call the graduation prospect, increases
sharply in p (see Figure 1d). Together with the calibrated distribution of p, this implies
that a large fraction of students face graduation prospects near 0 or 1 (Figure 1c).

Graduation probabilities. Next, we ask what the data imply for the distribution of
graduation probabilities. We expect graduation probabilities to increase with student abil-
ities. In the structural model, this is driven by the earnings gains associated with staying
in college. Students with poor graduation prospects expect small earnings gains. Even if
they could graduate by staying in college long enough, this would likely take a long time.
These students are therefore easily persuaded to drop out when faced with adverse shocks.
By contrast, students with strong graduation prospects face larger expected earnings gains
and are more resilient to shocks.

We incorporate this idea into the reduced form model in a simple way. We assume that
the probability of graduating from college, conditional on entering, is a logistic function
of ability. It has the same functional form as p (a). For simplicity, we set γmin = 0. The
parameters of this logistic function are calibrated to match the gap in credit accumulation
rates between college graduates and dropouts after two years in college (see Table 3).
Specifically, the calibration searches for parameter values that minimize the sum of squared
deviations between the model-implied and the observed numbers of credits earned for each
decile of the credit distribution between the 1st and the 9th. A penalty is added to the
objective function when the overall graduation rate implied by the model differs from the
data.
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Figure 1: Reduced Form Model: Credit Accumulation Rates and Graduation Prospects

(a) Distribution of credits
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(b) Credit accumulation rates
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(c) Distribution of graduation prospects
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(d) Graduation prospects and abilities
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Notes: Panel (a) compares the CDFs of credits implied by the reduced form model with
HS&B data. Panel (b) shows the distribution of course passing rates, while Panel (c)
shows the distribution of graduation prospects implied by the model. Panel (d) shows how
graduation prospects vary with the probability of passing a course.
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Figure 2 shows the implications of the calibrated model. The overall dropout rate among
college entrants is 48.8% vs 47.5% in the data. Figure 2a and Figure 2b show how well the
model fits the CDFs of earned credits for college dropouts and college graduates, respec-
tively.

The model implies that the graduation rate increases sharply with ability (Figure 2c). This
allows the model to account for the large gap in earned credits between college graduates
and college dropouts. A large fraction of college entrants faces either very low or very
high graduation probabilities. The model implies a striking difference in the graduation
probabilities, as of high school graduation, for students that eventually graduate compared
with those who eventually drop out. Most future college graduates are quite certain of their
success, while most future dropouts are quite certain of their failure to graduate.

The reduced form model clarifies how transcript data help to identify distribution of grad-
uation probabilities.

1. Replicating the large heterogeneity in earned credits observed in the data requires
that credit accumulation rates p must vary significantly across students.

2. Given that students can attempt a large number of courses before they must exit
college, graduation prospects increase sharply with p. It follows that graduation
prospects are very poor for students with in the bottom of the p distribution and very
strong for students in the top of the p distribution.

3. Replicating the large gaps in credit accumulation rates between college graduates
and dropouts requires that the two groups differ significantly in their mean p’s and
therefore also in their graduation prospects. This implies that both groups can predict
outcomes with high probability.

The reduced form model unfortunately does not reveal whether students know their grad-
uation prospects (or their ps) at the time of college entry. We turn to the structural model
to resolve this issue.
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Figure 2: Reduced Form Model: Graduation Probabilities

(a) Distribution of credits: Dropouts
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(b) Distribution of credits: Graduates
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(c) Graduation probabilities
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Notes: Panels (a) and (b) compare the CDFs of earned credits at the end of the second
year of college implied by the reduced form model with HS&B data for college dropouts
and college graduates, respectively. Panel (c) shows the CDF of graduation probabilities
for college dropouts (CD), college graduates (CG), and all college entrants (All).
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3 The Model

To estimate the distribution of graduation probabilities among college entrants, we develop
a structural model of college choice.13

3.1 Model Outline

We follow a single cohort, starting at the date of high school graduation (t = 1), through
college (if chosen), and work until retirement. When entering the model, each high school
graduate goes through the following steps:

1. The student draws an ability a that is not observed until he starts working. Ability
captures all persistent characteristics that make students more successful at school
and in the labor market.

2. The student draws a type j and a persistent financial shock ζ1. These jointly determine
his initial assets, college costs, parental transfers, and the student’s beliefs about his
ability.

3. The student chooses between attempting college or working as a high school graduate.

An agent who studies in period t faces the following choices:

1. He decides how much to work vt, consume ct, and save kt+1, subject to a borrowing
constraint.

2. He attempts nc college credits and succeeds in a random subset, which yields nt+1.
Based on the information contained in nt+1, the student updates his beliefs about a.

3. If the student has earned enough credits for graduation (nt+1 ≥ ngrad), he must work
in t + 1 as a college graduate. If he has exhausted the maximum number of years of
study (t = Tc), he must work in t + 1 as a college dropout. Otherwise, he draws a
new financial shock ζt+1 and then chooses between staying in college and working in
t+ 1 as a college dropout.

13The model and its parameterization extend those in Hendricks and Leukhina (2014) where we study
ability selection and the return to college.
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An agent who enters the labor market in period t learns his ability a. He then chooses a
consumption path to maximize lifetime utility, subject to a lifetime budget constraint that
equates the present value of income to the present value of consumption spending. Agents
are not allowed to return to school after they start working.

The details are described next. Our modeling choices are discussed in subsection 3.5.

3.2 Endowments

Agents enter the model at high school graduation (age t = 1) and live until age T . At age
1, a person is endowed with n1 = 0 completed college credits and with random draws of
ability a, type j, and financial shock ζ1.

Learning abilities a ∈ {â1, ..., âNa} determine productivity in school and at work. We
normalize â1 = 0 and order abilities such that âi+1 > âi. The student’s type j ∈ {1, ..., J}
determines

(
m̂j, k̂j, q̂j, ẑj

)
. m̂j is a noisy signal of a. The agent knows the probability

distribution of a given m̂j. k̂j ≥ 0 denotes financial assets. q̂j is the permanent component
of college costs. We think of this as capturing tuition, scholarships, grants, and other costs
or payoffs associated with attending college. ẑj denotes parental transfers that are received
during the first 6 periods after high school graduation, regardless of college attendance.

The financial shock ζt ∈ {1, ..., Nf} evolves according to a Markov chain with transition
matrix Π. The student’s college costs, parental transfers, and college earnings in each period
are jointly determined by (ζt, j). The distribution of endowments is specified in section 4.

3.3 Work

We now describe the solution of the household problem, starting with the last phase of
the household’s life, the work phase. Consider a person who starts working at age τ with
assets kτ , ability a, nτ college credits, and schooling level s ∈ {HS,CD,CG}, denoting
high school graduates, college dropouts, and college graduates, respectively. The worker
chooses a consumption path {ct} for the remaining periods of his life (t = τ, ..., T ) to solve

V (kτ , nτ , a, s, τ) = max
{ct}

T∑
t=τ

[
βt−τ ū(ct)

]
+ Us (1)
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subject to the budget constraint

exp (φsa+ µnτ + ys) +Rkτ =
T∑
t=τ

ctR
τ−t. (2)

Workers derive period utility ū (ct) from consumption, discounted at β > 0. Us captures
the utility derived from job characteristics associated with school level s that is common to
all agents. It includes the value of leisure. The role of Us is to allow the model to exactly
match the observed fraction of students choosing each school level. UHS is normalized to
zero. The budget constraint equates the present value of consumption spending to lifetime
earnings, exp (φsa+ µnτ + ys), plus the value of assets owned at age τ . R is the gross
interest rate. ys and φs > 0 are schooling-specific constants.

Lifetime earnings are a function of ability a, schooling s and college credits nτ . A worker
with ability a = â1 = 0 and no credits earns exp (ys). Each college credit increases lifetime
earnings by µ > 0 log points. This may reflect human capital accumulation. A unit increase
in ability raises lifetime earnings by φs. If φCG > φHS, high ability students gain more from
obtaining college degrees than do low ability students. This may be due to human capital
accumulation in college or on the job, as suggested by Ben-Porath (1967). We impose
yCD = yHS and φCD = φHS to ensure that attending college for a single period without
earning credits does not increase earnings simply by placing a “college” label on the worker.
The return to attending college without earning a degree is captured by µnτ .

Even though ys does not depend on τ , staying in school longer reduces the present value
of lifetime earnings by delaying entry into the labor market. Note that all high school
graduates share τ = 1 and nτ = 0, but there is variation in both τ and nτ among college
dropouts and college graduates.

Before the start of work, individuals are uncertain about their abilities. Expected utility is
then given by

VW (kτ , nτ , j, s, τ) =
Na∑
ι=1

Pr(âι|nτ , j, τ)V (kτ + Zj,τ , nτ , âι, s, τ), (3)

where Zj,τ denotes the present value of parental transfers received after the agent starts
working. Our model of credit accumulation implies that the vector (nτ , j, τ) is a suffi-
cient statistic for the worker’s beliefs about his ability, Pr(âι|nτ , j, τ), which implies that
(kτ , nτ , j, s, τ) is the correct state vector.
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3.4 College

We now describe a student’s progress through college. Consider an individual of type j
who has decided to study in period t. He enters the period with assets kt, financial shock
ζt, and nt college credits. In each period, the student attempts nc credits and completes
each with probability

p(a) = γmin +
1− γmin

1 + γ1e−γ2a
. (4)

We assume γ1, γ2 > 0, so that the probability of earning credits increases with ability.14

Based on the number of completed credits, nt+1, the student updates his beliefs about a.
Since nt is drawn from the Binomial distribution, it is a sufficient statistic for the student’s
entire history of course outcomes. It follows that his beliefs about a at the end of period t
are completely determined by nt+1 and j.

While in college, students derive utility from consumption ct and leisure 1−vt. Their sources
of funds are labor earnings wcollvt, interest on their assets (or debts) Rkt, and parental trans-
fers ẑj. They purchase consumption and college related items q (ζt, j) (including tuition).
Hence, the budget constraint is given by

kt+1 + ct + q (ζt, j) = Rkt + ẑj + wcollvt. (5)

Work hours v are chosen from a discrete set Ωζ ⊂ {v1, ..., vNw} that depends on the financial
shock ζ. The idea is that students receive either part time or full time work offers, which
determine their feasible hours.15 Financial shocks also affect college costs. The value of
being in college at age t is then given by

VC (nt, kt, ζt, j, t) = max
ct,vt∈Ωζ ,kt+1≥kmin

u (ct, 1− vt)

+ β
∑
nt+1

Pr (nt+1|nt, j, t)
∑
ζt+1

Πζt,ζt+1VEC (nt+1, kt+1, ζt+1, j, t+ 1)

subject to the budget constraint (5). kmin is a borrowing limit. Pr (nt+1|nt, j, t) denotes
the probability of having earned nt+1 credits at the end of period t. This is computed using
Bayes’ rule from the students’ beliefs about a. VEC denotes the value of entering period

14Allowing p(a) to be an unrestricted function of a does not change any of our findings; see subsection 6.3.
15subsection 6.3 explores an alternative specification where financial shocks affects wages rather than feasible
hours.
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t before the decision whether to work or study has been made. It is determined by the
discrete choice problem

VEC (nt, kt, ζt, j, t) = Emax {VC (nt, kt, j, t)− πηc, VW (kt, nt, ζt, j, s (nt) , t)− πηw} , (6)

where ηc and ηw are independent draws from a demeaned standard type I extreme value
distribution with scale parameter π > 0.16 s (n) denotes the schooling level associated with
n college credits (CG if n ≥ ngrad and CD otherwise). The implied choice probabilities and
value functions have closed form solutions.17

In evaluating VEC three cases can arise:

1. If n ≥ ngrad, then s (n) = CG and VC = −∞: the agent graduates from college with
continuation value VW (n, k, j, CG, t).

2. If t = Tc and n < ngrad, then s (n) = CD and VC = −∞: the student has ex-
hausted the permitted time in college and must drop out with continuation value
VW (n, k, j, CD, t).

3. Otherwise the agent chooses between working as a college dropout with s (n) = CD

and studying next period.

At high school graduation (t = 1), each student chooses whether to attempt college or work
as a high school graduate. The agent solves

max
{
VC(0, k̂j, j, 1)− πEη∗c , VW (k̂j, 0, ζ1, j,HS, 1)− πEη∗w

}
, (7)

where η∗c and η∗w are two independent draws from a demeaned standard type I extreme
value distribution with scale parameter πE > 0.

3.5 Discussion of Model Assumptions

Our model focuses on student abilities as the main determinant of how rapidly students
progress towards fulfilling the requirements for a college degree. We interpret the term

16Allowing the preference shocks to be correlated with ability signals does not materially change the results;
see subsection 6.3.

17See Rust (1987) and Arcidiacono and Ellickson (2011).
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“ability” broadly to encompass all persistent characteristics that affect students’ credit ac-
cumulation rates. Even though we use HS GPAs as (noisy) ability measures, we do not
imply that abilities are only cognitive skills. They may also include non-cognitive skills
(Kautz et al., 2014) or even preferences that affect study effort.18 Our empirical approach
does not depend on exactly which characteristics abilities represent. Similarly, our approach
does not depend on whether abilities affect course passing rates or the number of courses
attempted (both are important sources of variation in earned credits in the data). In the
model, both sources of variation are captured by the probability of passing a course, p(a).

We recognize that students may be endowed with other characteristics that affect dropout
behavior but not course outcomes. Examples include preferences for jobs that do or do
not require college degrees, or specialized skills that allow students to earn high wages
without a college degree. In abstracting from these additional endowments, our model
likely understates the predictability of college outcomes.

Our model allows for the possibility that students do not perfectly observe their abilities
before making college entry decisions. This captures the idea that college is experimentation
(Manski, 1989). At high school graduation, students are uncertain about their aptitudes.
This information is gradually revealed by the students’ performance in college. Stinebrick-
ner and Stinebrickner (2012) present survey evidence consistent with this idea. Abstracting
from this feature would bias our results in favor of highly predictable college outcomes.

The discussion of section 2 suggests that the most important modeling choices relate to
credit accumulation. We propose a simple model and show in subsection 4.4 that it accounts
for a range of observations. The main obstacle to studying a richer model is tractability. For
example, if the number of credits earned in period t depended either on study effort or on the
number of credits earned in previous periods, students’ beliefs about their abilities would
depend on the entire history of course outcomes. In effect, we would have to abandon
Manski’s idea of college as experimentation, which would raise the question whether we
biased our findings in favor of high predictability.

18The data collected by Babcock and Marks (2011, Table 6) suggest that differences in study time between
students with high and low SAT scores are small.
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4 Setting Model Parameters

We calibrate the model parameters to match data moments for men born around 1960.19

The model period is one year. Our main data sources are PETS and High School &
Beyond (HS&B; described in subsection 2.1). We estimate lifetime earnings from National
Longitudinal Surveys (NLSY79) data.

The NLSY79 is a representative, ongoing sample of persons born between 1957 and 1964
(Bureau of Labor Statistics; US Department of Labor, 2002). We collect education, earnings
and cognitive test scores for all men. We include members of the supplemental samples,
but use weights to offset the oversampling of minorities (see Appendix B for details). We
use data from the Current Population Surveys (King et al., 2010) to impute the earnings
of older workers (see Appendix C for details).

4.1 Distributional Assumptions

Our distributional assumptions allow us to model substantial heterogeneity in assets, ability
signals, and college costs in a parsimonious way. Here we summarize our modeling choices,
relegating details to Appendix D.

We set the number of types to J = 200. Each type has mass 1/J . We assume that
the marginal distributions are given by q̂j ∼ N

(
µq, σ

2
q

)
, ẑj ∼ max {0, N (µz, σ

2
z)}, k̂j ∼

max {0, N (µk, σ
2
k)}, and m ∼ N(0, 1). To capture the fact that transfers and assets are

non-negative with a mass at 0, we set negative draws of ẑj and k̂j to 0. Aside from this
truncation, we assume that these endowments are drawn from a joint Normal distribution.

The ability grid âi approximates a Normal distribution with mean ā and variance 1.
Each of the Na = 9 grid points has the same probability, Pr (âi) = 1/Na. For nota-
tional convenience, we normalize ā such that â1 = 0. Abilities are correlated with abil-
ity signals. High school GPAs are noisy measures of students’ ability signals: GPA =

(αGPA,mm+ εGPA) /
(
α2
GPA,m + 1

)1/2 with εGPA ∼ N (0, 1). This implies that the agents
know more about their abilities than we do. All endowment correlations are calibrated.

Financial shocks are specified as follows. In each period, students receive either part time
wage offers, which allow them to work at most 20 hours per week, or full time wage offers,

19The calibration strategy extends Hendricks and Leukhina (2014) to incorporate financial shocks.
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in which case all work states are admissible. The transition matrix for shocks to the feasible

set of work hours is given by

[
pv 1− pv

1− pv pv

]
. In addition, students receive i.i.d. college

cost shocks that are drawn from two equally likely states: q (ζ, j) = q̂j±∆q. Since parental
transfers are highly persistent in the data, we abstract from shocks to z. This yields
Nf = 4 states with obvious transition probabilities. We assume that all states have equal
probability at age 1.20

4.2 Mapping of Model and Data Objects

We discuss how we conceptually map model objects into data objects. Variables without
observable counterparts include abilities, ability signals, consumption, initial assets, and
preference shocks. We use the Consumer Price Index (all wage earners, all items, U.S. city
average) reported by the Bureau of Labor Statistics to convert dollar figures into year 2000
prices.

College. Students are classified as attending college if they attempt at least 9 non-
vocational credits in a given year, either at 4-year colleges or at academic 2-year colleges.
Students who earn 2-year college degrees are treated as dropouts, unless they transfer to
4-year colleges where they earn bachelor’s degrees.21 The returns to earning 2-year degrees
are captured by the effect of credits on lifetime earnings, µn.22 The fact that low test score
students tend to enroll in 2-year colleges is reflected in their lower average tuition costs.
Students attending vocational schools (e.g., police or beauty academies) are classified as
high school graduates.

We measure nt+1/ (tnc) as the number of completed college credits by the end of college
year t divided by the number of credits taken, assuming a full course load, which is defined
as the 90th percentile of the number of credits earned (36 credits per year). In the data,
college dropouts attempt fewer credits than college graduates. Since our model abstracts
from variation in course loads, we treat taking less than a full course load as failing the

20If we calibrate the persistence of cost shocks, the algorithm chooses no persistence. We also experimented
with shocks to the wage rate rather than admissible work hours. This does not substantially change the
findings (see subsection 6.3).

21Trachter (2015) studies the role of 2-year colleges as stepping stones towards bachelor’s degrees.
22In HS&B data, only 12% of students who enter 2-year institutions earn a 2-year degree.
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courses that were not taken. This captures the fact that taking fewer courses slows a
student’s progress towards graduation, which is a key element of our model.

Test scores. In the HS&B data, we divide students into quartiles according to their
high school GPAs. In the NLSY79 data, we use their 1989 Armed Forces Qualification
Test scores (NLSY79) instead. The AFQT aggregates a battery of aptitude test scores
into a scalar measure. The tests cover numerical operations, word knowledge, paragraph
comprehension, and arithmetic reasoning (see NLS User Services 1992 for details). We
remove age effects by regressing AFQT scores on the age at which the test was administered
(in 1980). Since Borghans et al. (2011) show that both measures are highly correlated, we
treat GPA quartiles and AFQT quartiles as equivalent. Sidestepping the question of what
test scores measure (see Flynn 2009), we use the term “test scores” in the text and the
symbol GPA in mathematical expressions.

Financial variables. We interpret annual college costs q as collecting all college related
payments that are conditional on attending college. In HS&B data, we measure tuition
and fees net of scholarships and grants. We set q equal to the average of these values
over the first two years in college plus $987 for other college expenditures, such as books,
supplies, and transportation.23 q does not include room and board, which are included in
consumption.

Parental transfers z represent transfers received from parents in the 6 years that follow high
school graduation. While HS&B does not report initial assets k1, it does report student
debt (negative values of kt). wcollv represents labor earnings received at any time during
the calendar year, including summer terms.

4.3 Model Parameters

Fixed parameters and functional forms.

1. The period utility function during work is given by ū (c) = c(1−θ)/ (1− θ).

23Since HS&B lacks information on these expenditures, we compute them as the average cost for 1992-93
undergraduate full-time students in the National Postsecondary Student Aid Study, conducted by the
U.S. Department of Education. These costs are defined as the amount student reported spending on
expenses directly related to attending classes, measured in year 2000 prices.
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2. Utility in college is given by u (c, 1− v) = δc(1−θ)/ (1− θ)+ρ ln(1−v). The parameter
δ ∈ (0, 1] reduces the marginal utility of consumption while in college. It is needed
to account for the low consumption expenditures of college students implied by the
financial data. The baseline model sets θ = 1 (log utility). subsection 6.3 explores
the implications of stronger risk aversion.

3. The discount factor is β = 0.98.

4. Based on McGrattan and Prescott (2000), the gross interest rate is set to R = 1.04.

5. Motivated by the fact that, in our HS&B sample, 95% of college graduates finish
college by their 6th year, we set the maximum duration of college to Tc = 6.

6. Each model course represents 2 courses in the data. The number of courses needed
to graduate is set to ngrad = 21 (125 data credits). In each year, students attempt
nc = 6 courses (36 data credits).

7. Work time: Students can choose from Nw = 5 discrete work hour levels in the set
{0; 10; 20; 30; 40}. In setting the choice set for v, we start from an annual time endow-
ment of 5824 hours (52 weeks with 16 hours of discretionary time per day). Based on
Babcock and Marks 2011, we remove 35.6 hours of study time for 32 weeks, covering
the fall and spring semesters, arriving at a time endowment net of study time of 90

hours per week. Given that v equals work time divided by time endowment, this
implies v ∈ {0.00; 0.11; 0.22; 0.33; 0.44}.

8. Earnings in college: We set wcoll to the mean hourly wage earned by college students
of $7.60.

9. Assets: While in college, students can choose from Nk = 12 discrete asset levels. For
each type j, the asset grid linearly spans the interval

[
kmin, k̂j

]
.

10. Borrowing limits are set to approximate those of Stafford loans, which are the pre-
dominant form of college debt for the cohort we study (see Johnson 2013). Until
1986, students could borrow $2,500 in each year of college up to a total of $12,500.
Converting into year 2000 prices implies kmin = −$19, 750.
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Calibrated parameters. The remaining 28 model parameters are jointly calibrated to
match the target data moments summarized in Table 4. We show the data moments in
subsection 4.4 where we compare our model with the calibration targets.

For each candidate set of parameters, the calibration algorithm simulates the life histories of
100, 000 individuals. It constructs model counterparts of the target moments and searches
for the parameter vector that minimizes a weighted sum of squared deviations between
model and data moments.24

Table 5 shows the values of the calibrated parameters. The first block of the table reports
the parameters governing the joint distribution of endowments. Table 6 shows the implied
endowment correlations. We highlight two features that are important for the predictability
of college outcomes.

First, ability signals are very precise. Thus, students can accurately predict their course ac-
cumulation rates and graduation prospects before entering college. Second, test scores are
noisy measures of abilities. This implies that graduation rates and graduation prospects
vary even more with ability than with test scores. Both features contribute to the pre-
dictability of college outcomes. We comment on the role played by other parameter values
when we present the paper’s findings in section 5.

4.4 Model Fit

This section assesses how closely the model attains selected calibration targets.25 We view
the fact that the model accounts for a broad range of observations, including the dispersion
and persistence of earned credits, as providing support for our modeling choices.

College credits. Table 7 shows how the model fits the credit accumulation rates displayed
earlier in section 2. The model replicates the large gaps in earned credits between college
graduates and dropouts and across high school GPA quartiles. Table 8 shows that the

24Within each block of moments, such as the fraction of students who drop out of college by test score
quartile and year in college, deviations are weighted by the inverse standard deviations of the data
moments or, if this is not available, by the square root of the number of observations used to compute
each data moment. The numerical optimization is performed using a multi-start algorithm similar to the
one proposed by Guvenen (2011) with Nelder-Mead as the local optimizer.

25To conserve space, a more detailed assessment of the model’s fit is relegated to Appendix E.
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Table 4: Calibration Targets

Target Value

Fraction in population, by (hs gpa quartile, schooling) Figure 3
Lifetime earnings, by (hs gpa quartile, schooling) Table 17
Dropout rate, by (hs gpa quartile, t) Figure 12
Average time to BA degree (years) 4.4

College credits
Mean cumulative credits, by (graduation status, t) Table 7
– by (hs gpa quartile, t) Table 7
Persistence of credits across years Table 8
CDF of cumulative credits, by t Figure 8
– by (graduation status, t) Figure 9, Figure 10
– by (hs gpa quartile, t) Figure 11

Financial moments
College costs q Table 18
(mean by hs gpa quartile, dispersion, autocorrelation)
Parental transfers z Table 18
(mean by hs gpa quartile, dispersion)
Earnings in college Table 18
(mean by hs gpa quartile, autocorrelation)
Fraction of students in debt, by t Table 19
Mean student debt, by t Table 19

Notes: Lifetime earnings targets are based on NLSY79 data. The remaining targets are
based on HS&B data.
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Table 5: Calibrated Parameters

Parameter Description Value

Endowments
µk, σk Marginal distribution of k1 36, 620; 29, 787

µq, σq Marginal distribution of q 5,331; 3,543
µz, σz Marginal distribution of z 3,154; 5,542
αm,z, αm,q, αq,z, αa,m Endowment correlations 0.46; -0.04; -0.12; 2.87
αk,m Correlation k1,m −0.21

αIQ,m Correlation IQ,m 1.20

Shocks
∆q q shock ($) 1,684
pv Persistence of employment shock 0.51

π Scale of preference shocks 1.197

πE Scale of preference shocks at entry 0.397

Lifetime earnings
φHS, φCG Effect of ability on lifetime earnings 0.155; 0.197
yHS, yCG Lifetime earnings factors 3.91; 3.95
µ Earnings gain for each college credit 0.010

Other parameters
ρ Weight on leisure 1.264

δ Weight on consumption 0.612

UCD, UCG Preference for job of type s -1.08; -2.46
γ1, γ2, γmin Credit accumulation rate p(a) 4.58; 2.10; 0.47

Table 6: Correlation of Endowments

GPA a m q z

GPA 1.00
a 0.67 1.00
m 0.72 0.92 1.00
q -0.13 -0.15 -0.16 1.00
z 0.28 0.34 0.37 -0.21 1.00
k1 -0.19 -0.25 -0.27 0.04 -0.06
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Table 7: Credit Accumulation Rates (%)

Year 1 Year 2 Year 3 Year 4
Group Model Data Model Data Model Data Model Data

Dropouts 59.3 57.1 (1.0) 59.3 59.6 (1.0) 58.6 55.6 (0.9) 56.3 53.6 (1.1)
Graduates 84.4 85.4 (0.6) 84.1 83.4 (0.5) 84.0 83.0 (0.4) 83.7 82.3 (0.4)

GPA quartile 1 53.1 48.1 (2.3) 53.8 53.7 (2.3) 55.3 58.1 (2.3) 57.6 62.3 (2.8)
GPA quartile 2 63.1 61.8 (1.6) 65.0 67.6 (1.4) 67.3 69.5 (1.4) 70.0 71.8 (1.5)
GPA quartile 3 71.1 71.0 (1.2) 73.3 71.5 (1.0) 75.1 72.4 (0.9) 76.7 75.3 (0.8)
GPA quartile 4 80.9 81.8 (0.9) 82.0 81.6 (0.7) 83.1 81.7 (0.6) 83.9 82.0 (0.5)

Notes: The credit accumulation rate is the number of college credits completed at the end
of each year divided by a full course load. Standard errors are in parentheses.

Source: High School & Beyond.

model also replicates the observed persistence of credit accumulation rates, but not its
decline over time. To conserve space, the distribution of credits is relegated to Appendix E.

Schooling and test scores. Figure 3 breaks down the schooling outcomes by test score
quartiles. Test scores are strong predictors of college entry and college completion. 81% of
students in the top test score quartile attempt college and 74% of them earn college degrees.
In the lowest test score quartile, only 22% of students enter college and only 11% of them
earn degrees.26 One question our model answers is why low ability students attempt college,
even though their graduation chances are small.

5 Results

This section examines what the calibrated model implies for the predictability of college
outcomes. We summarize predictability by focusing on the fraction of students with grad-
uation probabilities below 20% or above 80%. The idea is that these students can predict
their graduation outcomes so well that the value of the remaining uncertainty is small. The
policy experiments reported in section 6 confirm this intuition.

26Bound et al. (2010)’s Figure 2 documents similar patterns in NLS72 and NELS:88 data.
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Figure 3: Schooling and Test Scores
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(c) Test score quartile 3
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Notes: For each test score quartile, the figure shows the fraction of persons who attain
each schooling level.

Source: High School & Beyond.
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Table 8: Persistence of Credit Accumulation Rates

Year 1− 2 Year 2− 3 Year 3− 4

Correlations, model 0.46 0.46 0.44
data 0.48 0.42 0.39
Eigenvalues, model 0.52 0.47 0.44
data 0.51 0.47 0.41
N 1665 1378 1196

Notes: The table compares the persistence of the number of college credits earned implied
by the model with the data. “Correlations” refers to the correlation coefficients of credits
earned in t and t+ 1. “Eigenvalues” shows the second largest eigenvalues of transition
matrices. Each transition matrix indicates the probability that a student in a given

quartile of the distribution of credits earned in year t transits to another quartile in t+ 1.
Source: High School & Beyond.

5.1 Distribution of Graduation Probabilities

Figure 4a shows the CDF of graduation probabilities for the population of college entrants.27

Graduation is highly predictable for more than half of entrants. 24% of entrants face
graduation probabilities below 20% while 29% face graduation probabilities above 80%.
For comparison, the figure also shows the distribution for high school graduates who do not
enter college. Their graduation probabilities, were these students to enter college, are very
poor. 91% of them face graduation probabilities below 20%.

To understand why the model implies high predictability for many students, we study two
counterfactual experiments. At high school graduation, students differ in two types of en-
dowments that affect their graduation probabilities: ability signals and financial resources.
We quantify the role of both endowments by recomputing the model while shutting down
heterogeneity in one of them.

To isolate the role of financial resources, we shut down heterogeneity in ability signals.
This involves the following steps. We assign each high school graduate the distribution of
abilities Pr (a|j) that corresponds to the probability distribution of a among baseline college

27This is based on the simulated life histories of college entrants. For each type j, we compute the fraction
of college entrants that earns a bachelor’s degree. The CDF is not smooth because there are only 200

types.
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Figure 4: Distribution of Graduation Probabilities

(a) Baseline model
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(b) Counterfactuals
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Notes: The figure shows the CDF of graduation probabilities, conditional on student’s
information at the time of high school graduation. Panel (a) shows college entrants and high
school graduates who do not enter college. Panel (b) shows two counterfactual experiments
for students who enter college in the baseline model: (i) All students share common beliefs
about their abilities. (ii) All students are endowed with the same financial endowments
(k1, q, z).
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entrants. Financial resources still differ across types. We recompute students’ decision rules
and simulate their life histories, drawing abilities from the counterfactual Pr (a|j). We then
compute the distribution of college graduation rates in the population of students who enter
college in the baseline model.

Figure 4b shows that the resulting distribution of graduation probabilities looks markedly
different from the baseline model. It has almost no mass below 20% or above 80%. This
shows that financial heterogeneity does not play an important role for predicting college
outcomes. One reason is that very few students in the baseline model are close to their
borrowing limits (Table 19) or close to the maximum number of hours they could work in
college.

To isolate the role of heterogeneity in ability signals, we shut down financial heterogeneity.
This involves the following steps. In the baseline model, we compute the mean financial
endowments (k1, q, z) among college entrants. In the counterfactual, we assign all stu-
dents these mean financial endowments. The distribution of abilities, Pr (a|j), remains
unchanged. We compute new decision rules and simulate students’ life histories. Figure 4b
shows that the resulting distribution of graduation probabilities is very similar to the base-
line model. Shutting down financial heterogeneity alters graduation outcomes for only 3%

of college entrants, compared with 32% in the case where heterogeneity in ability signals is
shut down.28

These findings imply that heterogeneity in ability signals and therefore graduation prospects
is the main reason why graduation outcomes are highly predictable for many students. Next,
we explore the link between ability signals and college outcomes. We show that the high
predictability of college graduation arises for the following reasons.

1. Graduation prospects differ greatly between high and low ability students. To account
for the observed dispersion in credit accumulation rates, the model implies that course
passing rates p(a) increase sharply in a. The Binomial distribution of earned courses
then implies that graduation prospects differ greatly between high and low ability
students (subsection 5.2).

2. Graduation probabilities are closely related to graduation prospects. The incentives
for remaining in college until graduation increase sharply with graduation prospects.

28These numbers are calculated from the simulated life histories of students who enter college in both the
baseline model and in the counterfactual.

34



As a result, high ability students rarely drop out of college. By contrast, many low
ability students drop out, even though they could have graduated by staying in college
longer (subsection 5.3).

3. Students’ ability signals are very precise. Students can therefore accurately predict
their course passing rates and graduation prospects (subsection 5.4).

5.2 Distribution of Graduation Prospects

Figure 5a shows the distribution of graduation prospects (the probability of earning 21

courses in 6 years) among college entrants.29 A large fraction of students (61%) faces
graduation prospects above 80%. A much smaller fraction (9%) faces graduation prospects
below 20%. The distribution of course passing rates is approximately uniform over the
interval [0.50, 0.90].

Figure 5b shows the same information for students who do not enter college. It indicates
strong selection into college. Few students with strong graduation prospects fail to enter
college. The median graduation prospect among non-entrants is only 0.17, suggesting that
the inability to graduate is the main friction that prevents college entry.

To understand why the model implies that many students face either very high or very
low graduation prospects, recall the discussion of subsection 2.3. This discussion made the
following points. (i) Graduation prospects increase sharply with students’ credit accumu-
lation rates. (ii) The large dispersion in observed credit accumulation rates then implies
that many students face either very high or very low graduation prospects.

A similar reasoning underlies the large dispersion in the graduation prospects generated
by the structural model. To gain intuition, consider the distribution of credits earned at
the end of the second year in college (see Table 3). Students at the 80th percentiles of
the distribution earn 66 credits, compared with only 41 credits for students at the 20th

percentile. The binomial distribution of earned courses implies that only a fraction of this
dispersion can be accounted for by luck (random course outcomes).

To see this, consider the case where all students share the same course passing rate, given
by the mean observed in the data (p = 0.75). The standard deviation of earned courses
is then given by [p (1− p) 2nc]

0.5 = 2.1 (6.4 credits). The 20th and 80th percentiles of the

29Graduation prospects are based on students’ true abilities.
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Figure 5: Distribution of Graduation Prospects

(a) College entrants
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(b) College non-entrants
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Notes: The figure shows the distribution of graduation prospects and course passing rates
implied by the baseline model. The graduation prospect is the probability of earning at
least ngrad courses in Tc years. Panel (a) shows college entrants. Panel (b) shows students
who do not enter college.
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distribution are 48 and 60 credits, respectively. Clearly, some heterogeneity in p is needed
to account for the observed dispersion of credits.

To get a sense of how much dispersion in p is needed, consider the case where p is uniformly
distributed over the interval [pL, pH ]. The values of pL and pH that match the observed
number of credits earned at the 20th and 80th percentiles of the distribution are 0.50 and
1.00. The implied distribution of course passing rates is therefore quite close to what the
calibrated model implies (see Figure 5a).

This example clarifies how the model identifies the distribution of graduation prospects.
The binomial distribution limits the dispersion of credits that is due to luck. A large
part of the dispersion must therefore be generated by heterogeneity in course passing rates
and thus graduation prospects. The fact that the model is consistent with the observed
persistence of credit accumulation rates over time provides indirect support for the assumed
binomial distribution.

5.3 Graduation Prospects and College Outcomes

Figure 6a shows that college outcomes are closely related to graduation prospects. Both
entry and graduation rates increase sharply with student abilities. While students in the
lowest ability quintile have essentially no chance of graduating, students in the highest
ability decile graduate with 92% probability. Only students with intermediate abilities face
substantial uncertainty about their college outcomes. While 35% of students of median
ability attempt college, only 15% of these entrants eventually graduate.

Except for high ability students, graduation probabilities are far lower than graduation
prospects. This raises the question why so many students of low to medium abilities drop
out, even though many could graduate if they remained in college. To understand this, we
consider the financial rewards associated with college attendance.

This is complicated by the fact that students are uncertain about their true abilities. For-
tunately, the model implies that ability signals are very precise. The correlation between
signals and abilities is 0.92. It follows that inaccurate student beliefs do not play a major
role for college entry and dropout decisions. To show this, Figure 6b shows the same infor-
mation as Figure 6a, except that all probabilities are conditional on information available
at high school graduation rather than on true abilities. The similarity of both figures sug-
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Figure 6: Graduation Prospects and College Outcomes

(a) College outcomes
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(b) College outcomes and ability signals
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(c) Lifetime earnings
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Notes: Panel (a) shows the distribution graduation prospects, the fraction of students
who enter college, and the probability of graduating conditional on entry. Panel (b) shows
the same data conditional on information available to students at high school graduation.
Panel (c) shows mean log lifetime earnings, discounted to age 1, by ability signal and
schooling level. “Try college” shows the mean log lifetime earnings a student of given

signal could expect to earn, if he remained in college as long as possible (until graduation
or until year Tc). Lifetime earnings are based on simulated model histories. All lines in

panels (b) and (c) are smoothed using quadratic local regressions.
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gests that computing students incentives for college attendance conditional on information
available at age 1 does not introduce major inaccuracies.30

Figure 6c summarizes the financial rewards associated with college attendance. For each
signal, the figure shows the mean log lifetime earnings associated with each possible school
outcome (computed from simulated life histories). It also shows how much students can
expect to earn, if they stay in college until they either graduate or are forced to drop out
(at the end of year Tc). For students with below average ability signals, this counterfactual
reduces their lifetime earnings relative to those resulting from their optimal dropout deci-
sion. One reason is that these students are not likely to earn enough credits for graduation.
A second reason is that sheepskin effects are small for low ability students (because yCG is
only slightly larger than yHS).

It follows that, for students of low to medium ability signals, it makes little financial dif-
ference whether they remain in college a bit longer or shorter. As a result, these students
are easily persuaded to drop out, either because they lack the financial resources to pay for
college without working long hours, or because they are hit by shocks while in college. This
reduces their graduation probabilities far below their graduation prospects. The situation
is very different for students with high ability signals, who forego large earnings gains if
they drop out prematurely.

Figure 6c also sheds light on why low ability students rarely enter college. For a given
ability signal, working as a high school graduate or as a college dropout yields similar
lifetime earnings. The earnings gains associated with earning credits approximately offset
the costs associated with postponing labor market entry (and tuition). Since low ability
students rarely graduate, they have little financial incentive to enter college.

To summarize: In the data, we observe a wide dispersion in credit accumulation rates. Ac-
counting for this requires that some model students pass so many of their courses that their
graduation prospects are very strong. These students face strong financial incentives to re-
main in college until graduation. As a result, their graduation success is highly predictable.
On the other hand, accounting for the lowest observed credit accumulation rates requires
that some model students pass so few of their attempted courses that their graduation
prospects are far from certain. For these students, remaining in college until graduation

30Among students with low ability signals, variation in college entry rates is largely due to financial endow-
ments (and preference shocks), not to variation in graduation prospects. This is the reason why college
entry rates among low signal students are not monotone in m.
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(or until year Tc) would reduce their lifetime earnings compared with dropping out earlier.
Their financial incentives for remaining in college are weak. As a result, their failure to
graduate is highly predictable.

5.4 Precision of Students’ Ability Signals

The fact that students can accurately predict their graduation prospects plays an important
role in the preceding arguments. To understand why the model implies that signals are
precise, we study the model’s implications when we impose more signal noise. We do so
by calibrating the model while fixing the correlation between signals and abilities at 0.44,
compared with 0.92 in the baseline model (i.e., we set αa,m = 0.5). Examining which data
features this alternative model fails to account for reveals how the precision of the signal is
identified.

Table 9 displays selected changes relative to the baseline model. More signal noise reduces
the correlation between test scores and abilities from 0.67 in the baseline model to 0.36.
The mechanical reason is that test scores are themselves noisy measures of ability signals.
As a result, college outcomes, such as credit accumulation rates or dropout rates, vary too
little across test score quartiles (see rows 1 and 2 of Table 9).

The calibration algorithm attempts to offset these changes by increasing the correlation
between test scores and ability signals. However, given that college entry decisions depend
strongly on signals, this leads the model to overstate the association between test scores
and college entry decisions (row 3). These findings suggest that the values of signal noise
and test score noise are mainly determined by data moments that characterize how college
entry decisions and college outcomes vary across test score quartiles.

More signal noise also weakens the association between abilities and college entry rates (row
4). One mechanical reason is that students simply do not know their abilities at the time of
college entry. A second reason is that the value of attempting college increases for students
with low to medium ability signals. As a result, more high ability students work as high
school graduates, while more low ability students enter college. This shrinks the lifetime
earnings gap between college dropouts and high school graduates below its empirical value
(row 5).

The predictability of college graduation declines substantially when signals are less precise
(row 6). Virtually no college entrants face graduation probabilities below 20% or above 80%.

40



Table 9: Implications of Higher Signal Noise

Data Baseline Noisy signal

Differences between high/low test score students:
- credit accumulation rate (year 2) 0.28 0.28 0.11
- college dropout rate 0.63 0.63 0.34
- college entry rate 0.59 0.59 0.76
College entry rate, ability above/below median 0.58 0.28
Log lifetime earnings gap, CD vs HS 0.07 0.07 -0.02
Fraction with low / high graduation probabilities 24 / 29 2 / 3

Notes: The table shows the implications of increasing signal noise relative to the baseline
model. Rows 1 to 3 display differences between students in the top and bottom test score
quartile. Row 4 shows the difference in the college entry rate between students with abilities
above and below the median. Row 5 displays the log lifetime earnings gap between college
dropouts and high school graduates. Row 6 shows the fraction of college entrants with
graduation probabilities below 20% and above 80%.

In part, this is a mechanical consequence of students’ uncertainty about their abilities. This
is reinforced by a flatter relationship between course passing rates and abilities, p (a). The
latter allows more low ability students to graduate and thus prevents the dropout rate from
rising too much above the target value.

Summary. The main result of this section is that graduation is highly predictable for
a large fraction of college entrants. The primary reason is that many students face either
very strong or very poor graduation prospects. Transcript data enable the model to identify
the distribution of graduation prospects. Financial heterogeneity is not a major source of
predictability. The model also implies that students are able to predict their graduation
prospects with high precision before entering college. We demonstrate the robustness of
these findings in subsection 6.3.
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6 Policy Implications

This section explores policy implications. We ask how much (potential) college students
value either insurance against college related risks or information about their graduation
prospects (abilities).

Rather than study specific policies, we consider abstract interventions that provide complete
insurance against college related earnings risks or perfect information about ability. These
interventions quantify how much students value the uncertainty associated with college
attendance. The main finding is that the welfare gains generated by these interventions are
small for most students, especially for those facing little uncertainty about their graduation
outcomes.31

6.1 Insuring Earnings Risk

If college is risky, welfare could potentially be raised by providing insurance against the
financial risks associated with either dropping out of college or of requiring a long time
to earn a degree. In this section, we ask how much potential college entrants value such
insurance.

We consider idealized interventions that provide complete insurance against college related
consumption risks without incurring any implementation costs or deadweight losses. In
particular, we assume that students do not change their college entry or continuation be-
havior in response to the intervention. We thereby abstract from the moral hazard problem
associated with insurance provision: students have an incentive to drop out of college early,
knowing that this has no effect on their earnings.

We study two insurance arrangements. In the first case, the policy maker provides complete
consumption insurance during the work phase conditional on a student’s endowments a and
j. It assigns each worker the average age-consumption profile of workers endowed with the

31We expect the welfare gains that can be generated by implementable policies to be lower than those
generated by the abstract interventions we study. The main reason is that implementable policies need to
guard against moral hazard (students study less or drop out earlier), adverse selection (low ability students
enter college, knowing they will drop out), or deadweight losses related to financing the interventions.
We leave the study of such policies for future research.
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Table 10: Providing Insurance

Insurance within (a, j) groups j groups
Welfare gains median mean median mean

All 0.04 0.15 0.20 0.39
Entrants 0.26 0.27 0.69 0.64
High risk entrants 0.37 0.38 0.89 0.88

Notes: The table shows the distribution of compensating differentials, expressed as per-
centages of baseline consumption, implied by two interventions. The interventions assign
all college entrants within a type j or within an (a, j) group the group specific mean con-
sumption.

same (a, j) in the baseline model, starting at age Tc + 1 when all students have entered the
labor market.

This policy offers insurance against uncertain credit realizations and the associated earnings
and dropout risks. It also insures students against the consequences of ex-ante financial
heterogeneity and financial or preference shocks that lead otherwise identical students to
make different entry decisions.

The distribution of welfare gains is summarized in Table 10. Welfare gains are measured
by the percentage change in consumption that makes each type indifferent between the
baseline model and the insurance counterfactual. The median compensating differential for
this intervention amounts to only 0.04% of consumption. This is a direct consequence of the
high predictability of college graduation, which limits the uncertainty students face. The
average standard deviation of log consumption within (a, j) groups is only 0.04, compared
with 0.24 across all types. Limiting attention to baseline college entrants increases the
median welfare gain to 0.26%. This happens because the average welfare gains for types
with low entry probabilities are small.

The value of college related risks is closely related to graduation risk. To illustrate this
point, Figure 7 plots the welfare gains for all (a, j) types against their graduation probabil-
ities. The largest welfare gains occur for groups with intermediate graduation probabilities.
Excluding those j types that face little uncertainty about college graduation (their gradu-
ation probabilities, conditional on entry, lie between 20% and 80%), increases the median
welfare gain to 0.37%.
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Figure 7: Welfare Gains Due to Insurance Within (a, j) Groups
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Notes: Each data point is one (a, j) type. The size of each marker is proportional to the
mass of college entrants of each type.

Larger welfare gains can be obtained by also insuring students against uncertainty about
their true abilities. This is the second intervention shown in Table 10. For each type j,
the intervention replaces the random consumption stream received in the baseline model
with its type specific average (again starting at age Tc + 1). The median welfare gains
range from 0.20% (all students) to 0.89% (college entrants with significant graduation risk)
of baseline consumption. Of course, part of these welfare gains arise from redistribution
between students with high and low ability endowments rather than from insurance against
college related risks.

When interpreting these welfare gains, the reader should keep in mind that they arise from
complete consumption insurance during the work phase. By comparison, Chatterjee and
Ionescu (2012) find that forgiving the college costs of dropouts increases average welfare by
2.4% of consumption. This welfare gain is much larger, even though consumption insurance
is far from complete.
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6.2 Providing Information

Manski and Wise (1983) argue that students enter college in part to learn about their
abilities. This experimentation is costly. Students forego labor earnings and pay tuition
while in college. This argument suggests that welfare could be increased by providing
high school graduates with information about their abilities before they make college entry
decisions. This is one motivation behind dual enrollment programs that allow high school
students take college level courses (Stephanie Marken et al., 2013).

We study the welfare implications of a stylized policy intervention that costlessly informs
students about their abilities before they enter college. The details are as follows. For all
combinations of (a, j), we solve for the decision rules of an agent who knows his ability. The
associated value functions at high school graduations are labeled V a

HS (a, j). The expected
value of type j before learning his ability is given by V̂HS (j) = Ea {V a

HS (a, j) |j}. The
welfare gain of the intervention is the log change in annual consumption, starting at age 1,
that makes each type indifferent between the baseline value VHS (j) and V̂HS (j).

The average welfare gain across all high school graduates amounts to 0.15% of baseline
consumption. However, for the majority of students, the gains are essentially zero. The
reason is that students’ ability signals are quite precise. Many high school graduates have
sufficient information about their abilities to make ex post optimal college entry decisions
with high probability. Large welfare gains only accrue to medium ability students who face
substantial dropout risk.

Restricting attention to students who enter college in the baseline model excludes a large
fraction of low ability students who do not value information about their abilities much.
This increases average welfare gains to 0.22% of baseline consumption. These findings
highlight the importance of targeting the proper set of students for a policy intervention to
generate significant gains.

6.3 Robustness

This section explores the robustness of our findings when selected model features are mod-
ified. Specifically, we examine the following modifications:

1. p (a) is an unrestricted function of ability. Since there are only 9 ability levels, p (a)

can be specified as a vector of length 9.
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2. Financial shocks affect wages rather than feasible work hours. There are 5 finan-
cial states, ordered from worst to best. The calibrated parameters are ∆q,∆w

and pstay. College costs take on the values q (ζ, j) = q̂j − (ζ − 3) ∆q. Wages are
given by wcoll + (ζ − 3) ∆w. The transition probabilities are Pr (ζ ′ = ζ|ζ) = pstay,
Pr (ζ ′ = 2|ζ = 1) = Pr (ζ ′ = 4|ζ = 5) = 1 − pstay, Pr (ζ ′ = ζ ± 1|ζ) = 1 − pstay/2 for
interior ζ, and Pr (ζ ′|ζ) = 0 otherwise.

3. Smaller preference shocks: π = πE = 0.1.

4. Preference shocks that are correlated with ability signals: We assume that the means
of the preference shocks experience in college are drawn from a joint Normal distri-
bution together with the other student endowments (see subsection 4.1). Preferences
shocks are correlated with m, but not correlated with other endowments, conditional
on m.

5. Higher values of risk aversion (θ).

Table 11 summarizes how the predictability of college graduation and the welfare gains
of policy interventions change for each model specification. The only significant changes
occur when students are more risk averse than in the baseline model. This reduces the pre-
dictability of college graduation and increases the welfare gains of interventions. However,
the model’s ability to replicate the calibration targets deteriorates for higher values of risk
aversion (which is why the baseline model features log utility).

7 Conclusion

We conclude by considering potential avenues for future research. Since our model cap-
tures the distribution of risks and returns associated with entering college, it provides a
starting point for the study of college related policies, such as income contingent loans or
dual enrollment programs. However, the model abstracts from two features that may be
important for policy analysis.

The first feature is study effort. Insurance arrangements distort students’ incentives to
study. To capture these distortions, it is necessary to model how study effort affects college
outcomes. The second feature is earnings risk during the work phase. One motivation of
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Table 11: Robustness

Fraction with Median welfare gain
graduation probability Insurance Known

Model < 0.20 > 0.80 within j within (a, j) ability

Baseline 0.24 0.29 0.20 0.04 0.15
Unrestricted p(a) 0.23 0.31 0.21 0.05 0.17
Wage shocks 0.26 0.28 0.21 0.07 0.14
π = πE = 0.1 0.31 0.31 0.18 0.01 0.06
(ηc,m) correlated 0.25 0.31 0.22 0.05 0.15
θ = 1.5 0.22 0.21 0.46 0.18 0.11
θ = 2.0 0.19 0.18 0.58 0.18 0.11
θ = 4.0 0.17 0.17 1.91 0.98 0.80

Notes: The table explores the robustness of the main findings. Each row shows a model
version. The columns show the fraction of college entrants with low or high graduation
probabilities and the median welfare gains generated by the policy interventions described
in the text.

making college loans income contingent is to alleviate the tight budget constraints of young
workers who may be borrowing constrained. Modeling earnings shocks would also imply
that the model could be used to measure the predictability of lifetime earnings as of the
age of high school graduation (Huggett et al., 2011).
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Online Appendix

A High School & Beyond Data

We obtain data on the academic performance of college students and on their incomes and
expenditures from data collected by the National Education Longitudinal Studies (NELS)
program of the National Center for Education Statistics (NCES). The High School & Be-
yond (HS&B) survey covers the 1980 senior and sophomore classes (see United States
Department of Education. National Center for Education Statistics 1988). Both cohorts
were surveyed every two years through 1986. The 1980 sophomore class was also surveyed
in 1992, at which point postsecondary transcripts from all institutions attended since high
school graduation were collected under the initiative of the Postsecondary Education Tran-
script Study (PETS).32 We restrict attention to male sophomores that are surveyed at least
through 1986.

A.1 Enrollment and Dropout Statistics

The sample contains 5,837 students who graduated from high school in 1982. We split these
students into quartiles according to their high school GPA, which is available for 90% of
our sample. For the remaining 10%, we impute high school GPA by estimating a linear
regression with self-reported high school GPA, cognitive test score, and race as independent
variables. The cognitive test was conducted in the students’ senior year and was designed
to measure quantitative and verbal abilities.

Using PETS transcript data, we count the number of credits each student attempts and
completes in each year in college. Credits are defined as follows. We count withdrawals that
appear on transcripts as attempted but unearned credits. We drop transfer credits to avoid
double counting. We drop credits earned at vocational schools, such as police academies or
health occupation schools.

We count a student as entering college if he attempts at least 9 credits in a given academic
year. Using this definition, 48% of the cohort enters college immediately upon high school

32PETS data files were obtained through a restricted license granted by the National Center for Education
Statistics.
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Table 12: School Attainment of College Entrants

All Entrants Q. 1 Q. 2 Q. 3 Q. 4

Fraction graduating 0.52 0.11 0.25 0.51 0.74
Fraction dropping out, year 1 0.17 0.37 0.30 0.15 0.08
Fraction dropping out, year 2 0.15 0.28 0.19 0.19 0.07
Fraction dropping out, year 3 0.08 0.15 0.14 0.07 0.05
Fraction dropping out, year 4 0.05 0.04 0.09 0.05 0.03
Fraction dropping out, year 5 0.02 0.04 0.03 0.02 0.02

N 2,052 195 355 593 909
Notes: The table shows the fraction of college entrants in each high school GPA quartile

that drops out of college at the end of each year. N is the number of observations.

graduation. Another 2.7% of the cohort enter in the following year. Students obtaining
a bachelor’s degree within 6 years of initial enrollment are counted as college graduates,
even in the presence of breaks in their enrollment. The 52.5% of immediate entrants are
college graduates. Students that earn bachelor’s degrees later than 6 years after their initial
enrollment are dropped from the sample.33

For each high school GPA quartile, Table 12 shows the fraction of college entrants who
graduate from college and who drop out at the end of each year. These statistics are
computed from 2,052 college entrants with complete transcript histories. We refer to a
college entrant as a year x dropout if he/she enrolled continuously in years 1 through
x, attempted fewer than 7 credits in year x + 1, and failed to obtain a bachelor degree
within 6 years. 98.4% of the college graduates in our sample are enrolled continuously until
graduation.

A.2 Financial and Work Variables

In the second and third follow-up interviews (1984 and 1986), all students reported their
education expenses, various sources of financial support, and their work experience. Ta-
ble 13 shows the means of all financial variables for students who are enrolled in college in

33These students typically drop out within two years of initial enrollment, experiencing a long enrollment
break before returning to school. Counting these students as college graduate would raise the graduation
rate to 55%.
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Table 13: Financial Resources

Year 1 Year 2 Year 3 Year 4

Net cost, q 3,750 7,831 14,773 21,985
(1,864) (1,572) (1,161) (1,028)

Tuition 4,270 8,929 16,481 24,291
(1,875) (1,582) (1,226) (1,081)

Grants, scholarships 1,430 2,892 4,433 6,097
(1,989) (1,687) (1,303) (1,157)

Earnings 5,625 10,806 15,856 20,458
(2,042) (1,728) (1,444) (1,269)

Hours worked 803 1,535 2,174 2,736
(2,006) (1,690) (1,396) (1,223)

Loans 917 2,058 3,226 4,500
(1,997) (1,687) (1,320) (1,165)

Fraction in debt 0.26 0.35 0.41 0.47
(1,997) (1,687) (1,320) (1,165)

Parental transfers 4,114 8,533 11,835 15,134
(1,527) (1,300) (901) (805)

Notes: Dollar amounts are cumulative and in year 2000 prices. Average amounts include
zeros. Number of observations in parentheses.

a given year.

We construct total parental transfers as the sum of school-related and direct transfers to the
student. The school-related transfer refers to “payments on [the student’s] behalf for tuition,
fees, transportation, room and board, living expenses and other school-related expenses.”
It is available only for the first two academic years after high school graduation.

Direct transfers include in-kind support, such as room and board, use of car, medical
expenses and insurance, clothing, and any other cash or gifts. We set the transfer values
to the midpoints of the intervals they are reported in. For the highest interval, more than
$3,000 in current prices, we assign a value of $3,500. Direct transfers are reported at
calendar year frequencies. To impute values for academic years, we assume that half of the
transfer is paid out in each semester of the calendar year for which the transfer is reported.

Tuition and fees, the value of grants and student loans are available for each academic year.
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Grants refer to the total dollar value of the amount received from scholarships, fellowships,
grants, or other benefits (not loans) during the academic year.

Job history information contains start and end date of each job held since high school
graduation, typical weekly hours on the job, and wages. We define academic years as
running from July 1st to June 30. For each year, we measure total hours and total earnings
on each job, and in total. Hours on unpaid jobs such as internships are not counted
towards total hours. Wages are used to infer total earnings, and (the few) missing wages in
the presence of available hours are imputed as sample averages. Observations with missing
hours in the presence of available wages and observations with outlier hours (top 1%) are
flagged. Annual hours for flagged observations are imputed as self-reported calendar year
earnings divided by the sample average wage. 1983 calendar year earnings are used to infer
information for the 82/83 academic year, and so on.
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Table 14: Summary Statistics for the NLSY79 Sample

HSG CD CG All

Fraction 46.6 25.3 28.1 100.0
Avg. schooling 12.1 14.1 17.0 14.0
Range 9 - 13 13 - 20 12 - 20 9 - 20
AFQT percentile 34.3 51.3 75.0 50.0
N 1,447 800 675 2,922

Notes: For each school group, the table shows the fraction of persons achieving each
school level, average years of schooling and the range of years of schooling, the mean

AFQT percentile, and the number of observations.

B NLSY79 Data

The NSLY79 sample covers men born between 1957 and 1964 who earned at least a high
school diploma. We use the 1979− 2006 waves. We drop persons who were not interviewed
in 1988 or 1989 when retrospective schooling information was collected. We also drop
persons who did not participate in the AFQT (about 6% of the sample). Table 14 shows
summary statistics for this sample.

B.1 Schooling Variables

For each person, we record all degrees and the dates they were earned. At each interview,
persons report their school enrollments since the last interview. We use this information to
determine whether a person attended school in each year and which grade was attended. For
persons who were not interviewed in consecutive years, it may not be possible to determine
their enrollment status in certain years.

Visual inspection of individual enrollment histories suggests that the enrollment reports
contain a significant number of errors. It is not uncommon for persons to report that the
highest degree ever attended declined over time. A significant number of persons reports
high school diplomas with only 9 or 10 years of schooling. We address these issues in a
number of ways. We ignore the monthly enrollment histories, which appear very noisy. We
drop single year enrollments observed after a person’s last degree. We also correct a number
of implausible reports where a person’s enrollment history contains obvious outliers, such
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as single year jumps in the highest grade attained. We treat all reported degrees as valid,
even if years of schooling appear low.

Many persons report schooling late in life after long spells without enrollment. Since our
model does not permit individuals to return to school after starting to work, we ignore late
school enrollments in the data. We define the start of work as the first 5-year spell without
school enrollment. For persons who report their last of schooling before 1978, we treat
1978 as the first year of work. We assign each person the highest degree earned and the
highest grade attended at the time he starts working. Persons who attended at least grade
13 but report no bachelor’s degree are counted as college dropouts. Persons who report
13 years of schooling but fewer than 10 credit hours are counted as high school graduates.
The resulting school fractions are close to those obtained from the High School & Beyond
sample.

B.2 Lifetime Earnings

Lifetime earnings are defined as the present value of earnings up to age 70, discounted
to age 19. Our measure of labor earnings consists of wage and salary income and 2/3 of
business income. We assume that earnings are zero before age 19 for high school graduates,
before age 21 for college dropouts, and before age 23 for college graduates.

Since we observe persons at most until age 48, we need to impute earnings later in life. For
this purpose, we use the age earnings profiles we estimate from the CPS (see Appendix C).
The present value of lifetime earnings for the average CPS person is given by YCPS(s) =∑70

t=19 gCPS(t|s)R19−t. The fraction of lifetime earnings typically earned at age t is given
by gCPS(t|s)R19−t/YCPS(s).

For each person in the NLSY79 we compute the present value of earnings received at all
ages with valid earnings observations. We impute lifetime earnings by dividing this present
value by the fraction of lifetime earnings earned at the observed ages according to the CPS
age profile, gCPS(t|s)R19−t/YCPS(s).

An example may help the reader understand this approach. Suppose we observe a high
school graduate with complete earnings observations between the ages of 19 and 40. We
compute the present value of these earnings reports, including years with zero earnings, X.
According to our CPS estimates, 60% of lifetime earnings are received by age 40. Hence we
impute lifetime earnings of X/0.6.
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Table 15: Lifetime Earnings

HSG CD CG

exp(mean log) 600,061 643,153 944,269
Standard deviation (log) 0.51 0.55 0.50
N 578 343 319

Notes: The table show exp(mean log lifetime earnings), the standard deviation of log
lifetime earnings, and the number of observations in each school group.

In order to limit measurement error, we drop individuals who report zero earnings for
more than 30% of the observed years. We also drop persons with fewer than 5 earnings
observations after age 35 or whose reported earnings account for less than 30% of lifetime
earnings according to the CPS profile. Table 15 shows summary statistics for the persons
for which we can estimate lifetime earnings. One concern is that the NLSY79 earnings
histories are truncated around age 45, which leaves 20 to 30 years of earnings to be imputed.
Fortunately, the fitted CPS age profiles imply that around 70% of lifetime earnings are
earned before age 45.
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C CPS Data

C.1 Sample

In our main source of wage data, the NLSY79, persons are observed only up to around age
45. We use data from the March Current Population Survey (King et al., 2010) to extend
the NLSY79 wage profiles to older ages. Our sample contains men between the ages of 18

and 75 observed in the 1964− 2010 waves of the CPS. We drop persons who live in group
quarters or who fail to report wage income.

C.2 Schooling Variables

Schooling is inconsistently coded across surveys. Prior to 1992, we have information about
completed years of schooling (variable higrade). During this period, we define high school
graduates as those completing 12 years of schooling (higrade=150), college dropouts as those
with less than four years of college (151,...,181), and college graduates as those with 16+
years of schooling (190 and above). Beginning in 1992, the CPS reports education according
to the highest degree attained (educ99). For this period, we define high school graduates as
those with a high school diploma or GED (educ99=10), college dropouts as those with "some
college no degree," "associate degree/occupational program," "associate degree/academic
program" (11,12,13). College graduates are those with a bachelors, masters, professional,
or doctorate degree (14,...,17).

C.3 Age Earnings Profiles

Our goal is to estimate the age profile of mean log earnings for each school group. This
profile is used to fill in missing earnings observations in the NLSY79 sample and to estimate
individual lifetime earnings.

First, we compute the fraction of persons earning more than $2, 000 in year 2000 prices for
each age t within school group s, f(t|s). This is calculated by simple averaging across all
years. For the cohorts covered by the NLSY79, the fractions are similar to their NLSY79
counterparts.

Next, we estimate the age profile of mean log earnings for those earnings more than $2, 000

per year, which we assume to be the same for all cohorts, except for its intercept. To do
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so, we compute mean log earnings above $2, 000 for every [age, school group, year] cell.
We then regress, separately for each school group, mean log earnings in each cell on age
dummies, birth year dummies, and on the unemployment rate, which absorbs year effects.
We retain the birth cohorts 1935− 1980. We use weighted least squares to account for the
different number of observations in each cell.

Finally, we estimate the mean earnings at age t for the 1960 birth cohort as:

gCPS(t|s) = exp (1960 cohort dummy + age dummy(t) + year effect(1960 + t))f(t|s) (8)

For years after 2010, we impose the average year effect.
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D Calibration

Endowments and types. We randomly draw the endowments
(
k̂j, q̂j, ẑj, m̂j

)
as follows.

1. We draw independent standard Normal random vectors of length J : εz, εq, εm, and
εk.

2. We set ẑj = max (0, µz + σzεz,j), where εz,j is the jth element of εz.

3. We set q̂j = µq+σq
αq,zεz,j+εq,j

(α2
q,z+1)

1/2 , m̂j =
αm,zεz+αm,qεq,j+εm,j

(α2
m,z+α2

m,q+1)
1/2 , and k̂j = max

(
0,

αmkεm+εk,j

(α2
m,k+1)

1/2

)
.

The α parameters govern the correlations of the endowments. The numerators scale the
distributions to match the desired standard deviations. To conserve on parameters, we
assume that assets correlate only with εm.

Distribution of abilities. We think of ability grid point i as containing all continuous
abilities in the set Ωi =

{
a : i−1

Na
≤ Φ (a− ā) < i

Na

}
where Φ is the standard Normal cdf.

We therefore set âi = E {a|a ∈ Ωi}. We model the joint distribution of abilities and signals
as a discrete approximation of a joint Normal distribution given by

a = ā+
αa,mm+ εa(
α2
a,m + 1

)1/2
, (9)

where εa ∼ N(0, 1). The denominator ensures that the unconditional distribution of a has
a unit variance. We set Pr(âi|j) = Pr (a ∈ Ωi|m = m̂j).

E Model Fit

This section presents additional comparison of simulated model moments with their data
counterparts.

Schooling and lifetime earnings. Table 16 shows that the model closely fits the ob-
served fraction of persons attaining each school level and their mean log lifetime earnings.
Key features of the data are: (i) 47.5% of those attempting college fail to attain a bachelor’s
degree. (ii) College graduates earn 45 log points more than high school graduates over their
lifetimes. For college dropouts, the premium is only 7 log points.
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Table 16: Schooling and Lifetime Earnings

School group
HS CD CG

Fraction
Data 51.9 22.9 25.2
Model 52.3 23.0 24.7
Gap (pct) 0.7 0.7 -2.2
Lifetime earnings
Data 600 643 944
Model 598 640 947
Gap (pct) -0.3 -0.5 0.3

Note: The table shows the fraction of persons that chooses each school level and the
exponential of their mean log lifetime earnings, discounted to age 1, in thousands of year

2000 dollars. “Gap” denotes the percentage gap between model and data values.

Source: NLSY79.
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Table 17: Lifetime Earnings

HS GPA quartile
1 2 3 4

HS, model 4.02 4.10 4.15 4.18
data 3.93 (0.04) 4.12 (0.03) 4.22 (0.04) 4.22 (0.08)

CD, model 4.02 4.13 4.19 4.26
data 3.83 (0.08) 4.16 (0.05) 4.24 (0.05) 4.26 (0.06)

CG, model 4.40 4.47 4.52 4.58
data 4.11 (0.08) 4.57 (0.06) 4.46 (0.05) 4.60 (0.04)

Notes: The table shows mean log lifetime earnings, discounted to model age 1, for each
school group and test score quartile. Standard errors in parentheses.

Source: NLSY79.

Table 17 shows mean log lifetime earnings by school group and test score quartile. The
model broadly matches the data cells with large numbers of observations. The largest
discrepancy occurs for college graduates in the lowest test score quartile, which are quite
rare (32 observations).

College credits. Figure 8 shows the distribution of credits earned at the end of the first 4
years in college. Each bar represents a decile. While the overall fit is satisfactory, the model
fails along two dimensions. First, in year 1, the model admits too few distinct values for
earned credits (0 through 6) to match the finer empirical distribution. Second, the model
misses the very low number of credits earned by students in the bottom decile. The gap
between the first and the second decile suggests that the lowest credit realizations result
from shocks that we do not model.

Figure 9 and Figure 10 show the distribution of credits earned at the end of the first 4
years in college broken for students who eventually drop out and who eventually graduate,
respectively. Figure 11 shows the same information when students are divided into test
score quartiles.

64



Figure 8: Distribution of Credits by Year
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Figure 9: Distribution of Credits among Dropouts
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Figure 10: Distribution of Credits among Graduates
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Figure 11: Distribution of Credits by GPA Quartile

(a) GPA 1, Year 1
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(b) GPA 1, Year 2
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(c) GPA 1, Year 3
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(d) GPA 1, Year 4
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(e) GPA 2, Year 1
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(f) GPA 2, Year 2
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(g) GPA 2, Year 3
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(h) GPA 2, Year 4
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(i) GPA 3, Year 1
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(j) GPA 3, Year 2
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(k) GPA 3, Year 3
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(l) GPA 3, Year 4
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(m) GPA 4, Year 1
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(n) GPA 4, Year 2
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(o) GPA 4, Year 3
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(p) GPA 4, Year 4
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Dropout rates. Figure 12 shows college dropout rates, defined as the number of persons
dropping out at the end of each year divided by the number of college entrants in year
1. Dropout rates decline strongly with test scores and with time spent in college. They
help identify the rate at which students learn about their graduation prospect as they move
through college.

Financial resources. Table 18 shows the means of college costs, parental transfers, and
college earnings, averaged over the first two years in college, for students in each test score
quartile. In the data, higher ability students face slightly higher college costs, but they
also receive larger parental transfers. This allows them to work less. The average net cost
of attending college, q − wcollv, is negative, especially for low test score students.34 As a
measure of dispersion, the table also shows the 25th, 50th and 75th percentile values of
each variable.35

The autocorrelations of earnings and college costs exhibit a clear time pattern in the data:
they are high in years 1-2 and 3-4 but low in years 2-3. The likely reason is that students
are interviewed bi-annually. Autocorrelations are high when the figures for both years
are taken from the same interview and low otherwise. To circumvent this problem, the
calibration targets the average autocorrelations of y and q across years 1-4. Targeting the
lower autocorrelation between years 2 and 3 does not materially change the findings.

Table 19 shows student debt levels at the end of the first 4 years in college. Even after 4
years in college, only half of the students report owing any debts. Conditional on being
in debt, the average debt amounts to roughly half of the borrowing limit. These results
suggest that financial constraints do not bind for most of the students in our sample.

34This is consistent with Bowen et al. (2009) who report that average tuition payments for public 4-year
colleges roughly equal average scholarships and grants.

35Because of potential measurement error, we do not target standard deviations of the financial moments.
Doing so does not change our findings significantly.
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Figure 12: Dropout Rates

(a) Test score quartile 1
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(b) Test score quartile 2
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(c) Test score quartile 3
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(d) Test score quartile 4
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Notes: The figure shows the fraction of persons initially enrolled in college who drop out
at the end of each year in college.
Source: High School & Beyond.
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Table 18: Financial Moments

HS GPA quartile Percentile Auto
1 2 3 4 25 50 75 corr

q, model 3,568 3,374 3,476 4,080 1,226 3,462 6,092 0.80
data 3,122 3,097 3,828 4,280 1,354 2,705 5,378 0.80
(s.e.) (385) (246) (186) (160) – – – –
N 99 215 456 802 – – – –

z, model 2,201 3,597 4,595 5,353 0 2,699 6,601 –
data 2,942 3,506 3,870 6,286 432 2,409 6,491 –
(s.e.) (195) (199) (170) (209) – – – –
N 334 499 740 990 – – – –

ycoll, model 7,211 5,831 5,061 4,975 – – – 0.77
data 6,571 5,879 5,440 5,069 – – – 0.69
(s.e.) (524) (325) (203) (156) – – – –
N 122 255 512 839 – – – –

Notes: The table shows how the model fits data on college costs q, parental transfers z,
and earnings in college wcollv. Means are shown by test score (high school GPA) quartile.

Percentile values are shown for all college students. “Std.dev.” denotes standard
deviation. “Auto.corr.” denotes auto-correlation. All figures are in year 2000 dollars. “s.e.”
denotes the standard deviation of the sample mean. N is the number of observations.

Source: High School & Beyond.
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Table 19: Student Debt

Mean debt Fraction with debt
Year Model Data Model Data

1 3,709 3,511 (42) 15.9 26.1
2 5,728 5,945 (87) 26.8 34.6
3 8,072 7,871 (137) 48.8 41.0
4 10,276 9,486 (187) 53.2 47.4

Notes: The table shows the fraction of students with college debt (k < 0) at the end of
each year in college. Mean debt is conditional on being in debt. Standard errors are in

parentheses.
Source: High School & Beyond.
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